Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-32308987

RESUMEN

BACKGROUND: Photobiomodulation (PBMT) is a therapy that uses non-ionising forms of light, including low-level lasers and light-emitting diodes (LEDs) that may be capable of modulating cellular activity. Some biological processes may also interact with static magnetic fields (sMF), leading to modulatory effects on cells. Previous studies have verified that the combination of PBMT and sMF (PBMT/sMF) enhances the performance of individuals during aerobic training programs. The detraining period can cause losses in aerobic capacity. However, there is no evidence of the existence of any recourse that can decrease the effects of detraining. We aimed to investigate the effects of PBMT/sMF application during training and detraining to assess the effectiveness of this treatment in reducing the effects of detraining. METHODS: Sixty male volunteers were randomly allocated into four groups- participants who received PBMT/sMF during the training and detraining (PBMT/sMF + PBMT/sMF); participants who received PBMT/sMF during the training and a placebo in the detraining (PBMT/sMF + Placebo); participants who received a placebo during the training and PBMT/sMF in the detraining (Placebo+PBMT/sMF); and participants who received a placebo during the training and detraining (Placebo+Placebo). Participants performed treadmill training over 12 weeks (3 sessions/week), followed by 4 weeks of detraining. PBMT/sMF was applied using a 12-diode emitter (four 905 nm super-pulsed lasers, four 875 nm light-emitting diodes (LEDs), four 640 nm LEDs, and a 35 mT magnetic field) at 17 sites on each lower limb (dosage: 30 J per site). The data were analysed by two-way repeated measures analysis of variance (ANOVA, time vs experimental group) with post-hoc Bonferroni correction. RESULTS: The percentage of change in time until exhaustion and in maximum oxygen consumption was higher in the PBMT/sMF + PBMT/sMF group than in the Placebo+Placebo group at all time-points (p < 0.05). Moreover, the percentage of decrease in body fat at the 16th week was higher in the PBMT/sMF + PBMT/sMF group than in the Placebo+Placebo group (p < 0.05). CONCLUSIONS: PBMT/sMF can potentiate the effects of aerobic endurance training and decrease performance loss after a 4-week detraining period. Thus, it may prove to be an important tool for both amateur and high-performance athletes as well as people undergoing rehabilitation. TRIAL REGISTRATION: NCT03879226. Trial registered on 18 March 2019.

2.
Medicine (Baltimore) ; 98(18): e15317, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31045769

RESUMEN

INTRODUCTION: Over the last 10 years, it has been demonstrated that photobiomodulation therapy (PBMT), also known as phototherapy, using low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) has ergogenic effects, improving athletic performance and also accelerating post-exercise recovery. However, many aspects related to these effects and its clinical applicability remain unknown. Therefore, the aim of this project is to evaluate the ergogenic effects of PBMT in detraining after an aerobic endurance training protocol. METHODS AND ANALYZES: A randomized, triple-blind, placebo-controlled clinical trial will be carried out. Healthy male volunteers will be randomly distributed into 4 experimental groups: PBMT before and after training sessions + PBMT during detraining, PBMT before and after training sessions + placebo during detraining, placebo before and after training sessions + PBMT during detraining, and placebo before and after training sessions + placebo during detraining. The aerobic endurance training sessions will be carried out using motorized treadmills during 12 weeks, and the detraining period will consist in the next 4 weeks after that. It will be analyzed the time until exhaustion, maximal oxygen uptake (VO2max), and fat percentage of volunteers. DISCUSSION: Despite the increasing body of evidence for the use of PBMT as an ergogenic agent, several aspects remain unknown. The findings of this study will contribute to the advance of knowledge in this field regarding clinical applications. ETHICS AND DISSEMINATION: This study was approved by the Research Ethics Committee of Nove de Julho University. The results from this study will be further disseminated through scientific publications in international peer-reviewed journals and presentations at national and international scientific meetings. TRIAL REGISTRATION NUMBER: NCT03879226.


Asunto(s)
Rendimiento Atlético/estadística & datos numéricos , Entrenamiento Aeróbico/métodos , Terapia por Luz de Baja Intensidad/efectos adversos , Sustancias para Mejorar el Rendimiento/efectos adversos , Adolescente , Adulto , Rendimiento Atlético/fisiología , Distribución de la Grasa Corporal/estadística & datos numéricos , Prueba de Esfuerzo/métodos , Humanos , Terapia por Luz de Baja Intensidad/métodos , Masculino , Consumo de Oxígeno/fisiología , Placebos , Adulto Joven
3.
Lasers Med Sci ; 34(4): 711-719, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30255449

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by dyspnea, as well as musculoskeletal and systemic manifestations. Photobiomodulation therapy (PBMT) with use of low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) is an electrophysical intervention that has been found to minimize or delay muscle fatigue. The aim of this study was to evaluate the acute effect of PBMT with combined use of lasers diodes, light-emitting diodes (LEDs), magnetic field on muscle performance, exercise tolerance, and metabolic variables during the 6-minute stepper test (6MST) in patients with COPD. Twenty-one patients with COPD (FEV1 46.3% predicted) completed the 6MST protocol over 2 weeks, with one session per week. PBMT/magnetic field or placebo (PL) was performed before each 6MST (17 sites on each lower limb, with a dose of 30 J per site, using a cluster of 12 diodes 4 × 905 nm super-pulsed laser diodes, 4 × 875 nm infrared LEDs, and 4 × 640 nm red LEDs; Multi Radiance Medical™, Solon, OH, USA). Patients were randomized into two groups before the test according to the treatment they would receive. Assessments were performed before the start of each protocol. The primary outcomes were oxygen uptake and number of steps, and the secondary outcome was perceived exertion (dyspnea and fatigue in the lower limbs). PBMT/magnetic field applied before 6MST significantly increased the number of steps during the cardiopulmonary exercise test when compared to the results with placebo (129.8 ± 10.6 vs 116.1 ± 11.5, p = 0.000). PBMT/magnetic field treatment also led to a lower score for the perception of breathlessness (3.0 [1.0-7.0] vs 4.0 [2.0-8.0], p = 0.000) and lower limb fatigue (2.0 [0.0-5.0] vs 4.0 [0.0-7.0], p = 0.001) compared to that with placebo treatment. This study showed that the combined application of PBMT and magnetic field increased the number of steps during the 6MST and decreased the sensation of dyspnea and lower limb fatigue in patients with COPD.


Asunto(s)
Prueba de Esfuerzo , Ejercicio Físico/fisiología , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad , Campos Magnéticos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/radioterapia , Adulto , Estudios Cruzados , Femenino , Humanos , Rodilla/fisiopatología , Rodilla/efectos de la radiación , Masculino , Persona de Mediana Edad
4.
Lasers Med Sci ; 33(4): 719-727, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29185134

RESUMEN

Photobiomodulation therapy (PBMT) employing low-level laser therapy (LLLT) and/or light emitting diode therapy (LEDT) has emerged as an electrophysical intervention that could be associated with aerobic training to enhance beneficial effects of aerobic exercise. However, the best moment to perform irradiation with PBMT in aerobic training has not been elucidated. The aim of this study was to assess the effects of PBMT applied before and/or after each training session and to evaluate outcomes of the endurance-training program associated with PBMT. Seventy-seven healthy volunteers completed the treadmill-training protocol performed for 12 weeks, with 3 sessions per week. PBMT was performed before and/or after each training session (17 sites on each lower limb, using a cluster of 12 diodes: 4 × 905 nm super-pulsed laser diodes, 4 × 875 nm infrared LEDs, and 4 × 640 nm red LEDs, dose of 30 J per site). Volunteers were randomized in four groups according to the treatment they would receive before and after each training session: PBMT before + PBMT after, PBMT before + placebo after, placebo before + PBMT after, and placebo before + placebo after. Assessments were performed before the start of the protocol and after 4, 8, and 12 weeks of training. Primary outcome was time until exhaustion; secondary outcome measures were oxygen uptake and body fat. PBMT applied before and after aerobic exercise training sessions (PBMT before + PBMT after group) significantly increased (p < 0.05) the percentage of change of time until exhaustion and oxygen uptake compared to the group treated with placebo before and after aerobic exercise training sessions (placebo before + placebo after group) at 4th, 8th, and 12th week. PBMT applied before and after aerobic exercise training sessions (PBMT before + PBMT after group) also significantly improved (p < 0.05) the percentage of change of body fat compared to the group treated with placebo before and after aerobic exercise training sessions (placebo before + placebo after group) at 8th and 12th week. PBMT applied before and after sessions of aerobic training during 12 weeks can increase the time-to-exhaustion and oxygen uptake and also decrease the body fat in healthy volunteers when compared to placebo irradiation before and after exercise sessions. Our outcomes show that PBMT applied before and after endurance-training exercise sessions lead to improvement of endurance three times faster than exercise only.


Asunto(s)
Prueba de Esfuerzo , Terapia por Luz de Baja Intensidad/métodos , Resistencia Física , Tejido Adiposo , Adulto , Método Doble Ciego , Femenino , Humanos , Láseres de Semiconductores , Masculino , Fatiga Muscular/efectos de la radiación , Músculo Esquelético/efectos de la radiación , Consumo de Oxígeno , Placebos
5.
Photomed Laser Surg ; 35(11): 595-603, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29099680

RESUMEN

BACKGROUND: Photobiomodulation therapy (PBMT) has recently been used to alleviate postexercise muscle fatigue and enhance recovery, demonstrating positive results. A previous study by our research group demonstrated the optimal dose for an infrared wavelength (810 nm), but the outcomes could be optimized further with the determination of the optimal output power. OBJECTIVE: The aim of the present study was to evaluate the effects of PBMT (through low-level laser therapy) on postexercise skeletal muscle recovery and identify the best output power. MATERIALS AND METHODS: A randomized, placebo-controlled double-blind clinical trial was conducted with the participation of 28 high-level soccer players. PBMT was applied before the eccentric contraction protocol with a cluster with five diodes, 810 nm, dose of 10 J, and output power of 100, 200, 400 mW per diode or placebo at six sites of knee extensors. Maximum isometric voluntary contraction (MIVC), delayed onset muscle soreness (DOMS) and biochemical markers related to muscle damage (creatine kinase and lactate dehydrogenase), inflammation (IL-1ß, IL-6, and TNF-α), and oxidative stress (catalase, superoxide dismutase, carbonylated proteins, and thiobarbituric acid) were evaluated before isokinetic exercise, as well as at 1 min and at 1, 24, 48, 72, and 96 h, after the eccentric contraction protocol. RESULTS: PBMT increased MIVC and decreased DOMS and levels of biochemical markers (p < 0.05) with the power output of 100 and 200 mW, with better results for the power output of 100 mW. CONCLUSIONS: PBMT with 100 mW power output per diode (500 mW total) before exercise achieves best outcomes in enhancing muscular performance and postexercise recovery. Another time it has been demonstrated that more power output is not necessarily better.


Asunto(s)
Ejercicio Físico/fisiología , Terapia por Luz de Baja Intensidad/métodos , Fatiga Muscular/fisiología , Fatiga Muscular/efectos de la radiación , Músculo Esquelético/fisiología , Músculo Esquelético/efectos de la radiación , Recuperación de la Función/fisiología , Recuperación de la Función/efectos de la radiación , Fútbol/fisiología , Adolescente , Adulto , Biomarcadores/sangre , Método Doble Ciego , Humanos , Masculino
7.
Lasers Med Sci ; 31(8): 1555-1564, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27371449

RESUMEN

The effects of phototherapy (or photobiomodulation therapy) with low-level laser therapy (LLLT) and/or light-emitting diodes (LEDs) on human performance improvement have been widely studied. Few studies have examined its effect on muscular training and no studies have explored the necessary moment of phototherapy irradiations (i.e., before and/or after training sessions). The aim of this study was to determine the optimal moment to apply phototherapy irradiation when used in association with strength training. Forty-eight male volunteers (age between 18 to 35 years old) completed all procedures in this study. Volunteers performed the strength training protocol where either a phototherapy and/or placebo before and/or after each training session was performed using cluster probes with four laser diodes of 905 nm, four LEDs of 875 nm, and four LEDs of 640 nm-manufactured by Multi Radiance Medical™. The training protocol duration was 12 weeks with assessments of peak torque reached in maximum voluntary contraction test (MVC), load in 1-repetition maximum test (1-RM) and thigh circumference (perimetry) at larger cross-sectional area (CSA) at baseline, 4 weeks, 8 weeks, and 12 weeks. Volunteers from group treated with phototherapy before and placebo after training sessions showed significant (p < 0.05) changes in MVC and 1-RM tests for both exercises (leg extension and leg press) when compared to other groups. With an apparent lack of side effects and safety due to no thermal damage to the tissue, we conclude that the application of phototherapy yields enhanced strength gains when it is applied before exercise. The application may have additional beneficial value in post-injury rehabilitation where strength improvements are needed.


Asunto(s)
Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Fototerapia/métodos , Adolescente , Adulto , Método Doble Ciego , Ejercicio Físico , Humanos , Masculino , Fuerza Muscular/efectos de la radiación , Entrenamiento de Fuerza , Resultado del Tratamiento , Adulto Joven
8.
J Athl Train ; 51(2): 129-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26942660

RESUMEN

CONTEXT: Skeletal muscle fatigue and exercise performance are novel areas of research and clinical application in the photobiomodulation field, and positive outcomes have been reported in several studies; however, the optimal measures have not been fully established. OBJECTIVE: To assess the acute effect of photobiomodulation therapy (PBMT) combining superpulsed lasers (low-level laser therapy) and light-emitting diodes (LEDs) on muscle performance during a progressive cardiopulmonary treadmill exercise test. DESIGN: Crossover study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: Twenty untrained male volunteers (age = 26.0 ± 6.0 years, height = 175.0 ± 10.0 cm, mass = 74.8 ± 10.9 kg). INTERVENTION(S): Participants received PBMT with either combined superpulsed lasers and LED (active PBMT) or placebo at session 1 and the other treatment at session 2. All participants completed a cardiopulmonary test on a treadmill after each treatment. For active PBMT, we performed the irradiation at 17 sites on each lower limb (9 on the quadriceps, 6 on the hamstrings, and 2 on the gastrocnemius muscles), using a cluster with 12 diodes (four 905-nm superpulsed laser diodes with an average power of 0.3125 mW, peak power of 12.5 W for each diode, and frequency of 250 Hz; four 875-nm infrared LED diodes with an average power of 17.5 mW; and four 640-nm red LED diodes with an average power of 15 mW) and delivering a dose of 30 J per site. MAIN OUTCOME MEASURE(S): Distance covered, time until exhaustion, pulmonary ventilation, and dyspnea score. RESULTS: The distance covered (1.96 ± 0.30 versus 1.84 ± 0.40 km, t19 = 2.119, P < .001) and time until exhaustion on the cardiopulmonary test (780.2 ± 91.0 versus 742.1 ± 94.0 seconds, t19 = 3.028, P < .001) was greater after active PBMT than after placebo. Pulmonary ventilation was greater (76.4 ± 21.9 versus 74.3 ± 19.8 L/min, t19 = 0.180, P = .004) and the score for dyspnea was lower (3.0 [interquartile range = 0.5-9.0] versus 4.0 [0.0-9.0], U = 184.000, P < .001) after active PBMT than after placebo. CONCLUSIONS: The combination of lasers and LEDs increased the time, distance, and pulmonary ventilation and decreased the score of dyspnea during a cardiopulmonary test.


Asunto(s)
Tolerancia al Ejercicio/fisiología , Láseres de Semiconductores , Terapia por Luz de Baja Intensidad , Fatiga Muscular/efectos de la radiación , Músculo Esquelético/efectos de la radiación , Ventilación Pulmonar/fisiología , Adulto , Estudios Cruzados , Método Doble Ciego , Prueba de Esfuerzo , Humanos , Masculino , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Adulto Joven
9.
Lasers Med Sci ; 30(5): 1575-81, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25987340

RESUMEN

From the very first reports describing the method of action of phototherapy, the effects have been considered to be the result of photochemical and photophysical interactions between the absorbed photons and tissue and not related to secondary changes in tissue or skin temperature. However, thermal effects have been recently reported in dark pigmented skin when irradiated with single wavelengths of 810 and 904 nm of low-level laser therapy (LLLT) devices even with doses that do not exceed those recommended by the World Association of Laser Therapy (WALT). The aim of this study was to evaluate the thermal impact during the concurrent use of pulsed red and infrared LEDs and super-pulsed lasers when applied to light, medium, and dark pigmented human skin with doses typically seen in clinical practice. The study evaluated the skin temperature of 42 healthy volunteers (males and females 18 years or older, who presented different pigmentations, stratified according to Von Luschan's chromatic scale) via the use of a thermographic camera. Active irradiation was performed with using the multi-diode phototherapy cluster containing four 905-nm super-pulsed laser diodes (frequency set to 250 Hz), four 875-nm infrared-emitting diodes, and four 640-nm LEDs (manufactured by Multi Radiance Medical™, Solon, OH, USA). Each of the four doses were tested on each subject: placebo, 0 J (60 s); 10 J (76 s); 30 J (228 s); and 50 J (380 s). Data were collected during the last 5 s of each dose of irradiation and continued for 1 min after the end of each irradiation. No significant skin temperature increases were observed among the different skin color groups (p > 0.05), age groups (p > 0.05), or gender groups (p > 0.05). Our results indicate that the concurrent use of super-pulsed lasers and pulsed red and infrared LEDs can be utilized in patients with all types of skin pigmentation without concern over safety or excessive tissue heating. Additionally, the doses and device utilized in present study have demonstrated positive outcomes in prior clinical trials. Therefore, it can be concluded that the effects seen by the concurrent use of multiple wavelengths and light sources were the result of desirable photobiomodulation effect and not related to thermal influence.


Asunto(s)
Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad , Pigmentación de la Piel , Temperatura Cutánea/efectos de la radiación , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
Lasers Med Sci ; 30(1): 437-43, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25413975

RESUMEN

Phototherapy is an electrophysical intervention being considered for the retardation of peripheral muscular fatigue usually observed in chronic obstructive pulmonary disease (COPD). The objective of this study was to evaluate the acute effects of combination of super-pulsed laser and light-emitting diodes phototherapy on isokinetic performance in patients with COPD. Thirteen patients performed muscular endurance tests in an isokinetic dynamometer. The maximum voluntary isometric contraction (MVIC), peak torque (PT), and total work (TW) of the non-dominant lower limb were measured in two visits. The application of phototherapy or placebo (PL) was conducted randomly in six locations of femoral quadriceps muscle by using a cluster of 12 diodes (4 of 905 nm super-pulsed lasers, 0.3125 mW each; 4 of 875 nm LEDs, 17.5 mW each; and 4 of 640 nm LEDs, 15 mW each, manufactured by Multi Radiance Medical™). We found statistically significant increases for PT (174.7 ± 35.7 N · m vs. 155.8 ± 23.3 N · m, p = 0.003) and TW after application of phototherapy when compared to placebo (778.0 ± 221.1 J vs. 696.3 ± 146.8 J, p = 0.005). Significant differences were also found for MVIC (104.8 ± 26.0 N · m vs. 87.2 ± 24.0 N · m, p = 0.000), sensation of dyspnea (1 [0-4] vs. 3 [0-6], p = 0.003), and fatigue in the lower limbs (2 [0-5] vs. 5 [0.5-9], p = 0.002) in favor of phototherapy. We conclude that the combination of super-pulsed lasers and LEDs administered to the femoral quadriceps muscle of patients with COPD increased the PT by 20.2% and the TW by 12%. Phototherapy with a combination of super-pulsed lasers and LEDs prior to exercise also led to decreased sensation of dyspnea and fatigue in the lower limbs in patients with COPD.


Asunto(s)
Disnea/complicaciones , Rayos Láser , Fatiga Muscular/efectos de la radiación , Fuerza Muscular/efectos de la radiación , Músculos/efectos de la radiación , Óptica y Fotónica , Fototerapia , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Humanos , Persona de Mediana Edad , Músculos/fisiopatología , Resistencia Física/efectos de la radiación , Placebos , Sensación , Torque
11.
Lasers Med Sci ; 30(2): 925-39, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24249354

RESUMEN

Recent studies have explored if phototherapy with low-level laser therapy (LLLT) or narrow-band light-emitting diode therapy (LEDT) can modulate activity-induced skeletal muscle fatigue or subsequently protect against muscle injury. We performed a systematic review with meta-analysis to investigate the effects of phototherapy applied before, during and after exercises. A literature search was performed in Pubmed/Medline database for randomized controlled trials (RCTs) published from 2000 through 2012. Trial quality was assessed with the ten-item PEDro scale. Main outcome measures were selected as: number of repetitions and time until exhaustion for muscle performance, and creatine kinase (CK) activity to evaluate risk for exercise-induced muscle damage. The literature search resulted in 16 RCTs, and three articles were excluded due to poor quality assessment scores. From 13 RCTs with acceptable methodological quality (≥6 of 10 items), 12 RCTs irradiated phototherapy before exercise, and 10 RCTs reported significant improvement for the main outcome measures related to performance. The time until exhaustion increased significantly compared to placebo by 4.12 s (95% CI 1.21-7.02, p < 0.005) and the number of repetitions increased by 5.47 (95% CI 2.35-8.59, p < 0.0006) after phototherapy. Heterogeneity in trial design and results precluded meta-analyses for biochemical markers, but a quantitative analysis showed positive results in 13 out of 16 comparisons. The most significant and consistent results were found with red or infrared wavelengths and phototherapy application before exercises, power outputs between 50 and 200 mW and doses of 5 and 6 J per point (spot). We conclude that phototherapy (with lasers and LEDs) improves muscular performance and accelerate recovery mainly when applied before exercise.


Asunto(s)
Biomarcadores/sangre , Ejercicio Físico/fisiología , Terapia por Luz de Baja Intensidad , Óptica y Fotónica , Fenómenos Biomecánicos , Proteína C-Reactiva/metabolismo , Creatina Quinasa/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/sangre , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Placebos , Ensayos Clínicos Controlados Aleatorios como Asunto
12.
Lasers Med Sci ; 29(6): 1967-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24942380

RESUMEN

Recent studies with phototherapy have shown positive results in enhancement of performance and improvement of recovery when applied before exercise. However, several factors still remain unknown such as therapeutic windows, optimal treatment parameters, and effects of combination of different light sources (laser and LEDs). The aim of this study was to evaluate the effects of phototherapy with the combination of different light sources on skeletal muscle performance and post-exercise recovery, and to establish the optimal energy dose. A randomized, double-blinded, placebo-controlled trial with participation of 40 male healthy untrained volunteers was performed. A single phototherapy intervention was performed immediately after pre-exercise (baseline) maximum voluntary contraction (MVC) with a cluster of 12 diodes (4 of 905 nm lasers-0.3125 mW each, 4 of 875 nm LEDs-17.5 mW each, and 4 of 670 nm LEDs-15 mW each- manufactured by Multi Radiance Medical™) and dose of 10, 30, and 50 J or placebo in six sites of quadriceps. MVC, delayed onset muscle soreness (DOMS), and creatine kinase (CK) activity were analyzed. Assessments were performed before, 1 min, 1, 24, 48, 72, and 96 h after eccentric exercise protocol employed to induce fatigue. Phototherapy increased (p < 0.05) MVC was compared to placebo from immediately after to 96 h after exercise with 10 or 30 J doses (better results with 30 J dose). DOMS was significantly decreased compared to placebo (p < 0.05) with 30 J dose from 24 to 96 h after exercise, and with 50 J dose from immediately after to 96 h after exercise. CK activity was significantly decreased (p < 0.05) compared to placebo with all phototherapy doses from 1 to 96 h after exercise (except for 50 J dose at 96 h). Pre-exercise phototherapy with combination of low-level laser and LEDs, mainly with 30 J dose, significantly increases performance, decreases DOMS, and improves biochemical marker related to skeletal muscle damage.


Asunto(s)
Ejercicio Físico/fisiología , Terapia por Luz de Baja Intensidad/métodos , Fatiga Muscular/efectos de la radiación , Músculo Esquelético/fisiología , Adulto , Biomarcadores , Método Doble Ciego , Humanos , Rayos Láser , Masculino , Contracción Muscular , Fatiga Muscular/fisiología , Músculo Cuádriceps/efectos de la radiación , Factores de Tiempo , Adulto Joven
13.
Respir Care ; 59(1): 62-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23801786

RESUMEN

BACKGROUND: Peripheral muscle dysfunction is a common finding in patients with COPD; however, the structural adaptation and functional impairment of the upper and lower limb muscles do not seem to be homogenous. We compared muscle fatigue and recovery time between 2 representative muscles: the middle deltoid and the quadriceps femoris. METHODS: Twenty-one subjects with COPD (FEV1 46.1 ± 10.3% of predicted) underwent maximal voluntary isometric contraction and an endurance test (60% of maximal voluntary isometric contraction, to the limit of tolerance). The maximal voluntary isometric contraction test was repeated after 10 min, 30 min, 60 min, and 24 hours for both the quadriceps femoris and middle deltoid. Surface electromyography was recorded throughout the endurance test. RESULTS: Maximal voluntary isometric contraction significantly decreased only for the middle deltoid between 10 and 60 min after the endurance test. A significant increase of the root mean square and a greater decline in median frequency throughout the endurance test occurred for the middle deltoid, compared with the quadriceps femoris. When dyspnea and fatigue scores were corrected by endurance time, higher values were observed for the middle deltoid (0.07 and 0.08, respectively) in relation to the quadriceps femoris (0.02 and 0.03, respectively). CONCLUSIONS: Subjects with COPD had a higher fatigability of a representative upper limb muscle (middle deltoid) than a lower limb muscle (quadriceps femoris).


Asunto(s)
Músculo Deltoides/fisiopatología , Fatiga Muscular , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Músculo Cuádriceps/fisiopatología , Anciano , Anciano de 80 o más Años , Estudios Transversales , Disnea/etiología , Electromiografía , Prueba de Esfuerzo , Femenino , Humanos , Contracción Isométrica , Masculino , Persona de Mediana Edad , Resistencia Física , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Factores de Tiempo
14.
Lasers Med Sci ; 29(1): 359-65, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23743817

RESUMEN

Patients with chronic obstructive pulmonary disease (COPD) are susceptible to early muscle fatigue. Light-emitting diodes therapy (LEDT) has been used to minimize muscle fatigue in athletes and healthy subjects. The aim of this study is to investigate the acute effects of LEDT on muscle fatigue and perception of effort in patients with COPD during isometric endurance test of the quadriceps femoris (QF). Ten patients (VEF1 50 ± 13% of predicted) underwent a single LEDT and sham application, 48 h apart, in a randomized crossover design. The LEDT and sham were applied in three localized areas of the QF (rectus femoris, vastus lateralis, and vastus medialis). Before and after exposure to LEDT and sham, the patients performed an isometric endurance test (60 % of the maximum voluntary isometric contraction), until the limit of tolerance concomitant to surface electromyography recording (median frequency as mean outcome). The slope obtained from linear regression analysis of the median frequency (MF) over endurance time was also used as an endurance index. Endurance time increased significantly after exposure to LEDT (from 26 ± 2 to 53 ± 5 s) as compared to sham (from 23 ± 3 to 30 ± 4 s) (F = 64, P = 0.0001). A greater decline in MF was observed during isometric endurance test after sham, compared to LEDT (F = 14.6, P = 0.004). The slope of the MF over time was lower post-LEDT compared to post-sham (-0.7 ± 0.3 vs. -1.5 ± 0.8; P = 0.004). The dyspnea score corrected for endurance time was lower post-LEDT (P = 0.008) but similar for fatigue both post-LEDT and post-sham. A single application of LEDT minimizes muscle fatigue and increases isometric endurance time.


Asunto(s)
Fototerapia/métodos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Anciano , Ejercicio Físico , Femenino , Volumen Espiratorio Forzado/efectos de la radiación , Humanos , Masculino , Persona de Mediana Edad , Fatiga Muscular/efectos de la radiación , Resistencia Física/efectos de la radiación , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Músculo Cuádriceps/fisiopatología , Músculo Cuádriceps/efectos de la radiación , Capacidad Vital/efectos de la radiación
15.
Trials ; 14: 134, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23663518

RESUMEN

BACKGROUND: Light-emitting diodes (LED) have been used to minimize muscle fatigue in athletes and healthy subjects. Patients with chronic obstructive pulmonary disease (COPD) are susceptible to early muscle fatigue. OBJECTIVE: The objective of this study is to investigate the acute effects of LED on muscle function, exercise capacity and cardiorespiratory responses during isometric and dynamic exercise in patients with COPD. METHODS: This study will assess 30 patients with moderate to severe obstruction (forced expiratory volume-one second,FEV1 ≤70% predicted). Isometric and dynamic protocols will be conducted in two visits each, for a total of four visits a week apart. First, venous blood will be taken from the patients. The isometric protocol will start with the determination of the maximum voluntary isometric contraction (MIVC) to determine the workload (60% of MIVC) for the isometric endurance test (IET). Patients will be randomized to receive either the placebo or LED application (each point will be irradiated for 30 s and the energy received at each point will be 41.7 J). Immediately after finishing this procedure, the patients will carry out the IET until the limit of tolerance or until a 20% fall of strength is observed. After the test, another blood draw will be taken. In another visit (one week later), the same order of procedures will be performed, except with the opposite (LED or placebo). For the dynamic endurance test (DET), the same procedures described above will be followed, except with 75% of the maximal workload obtained from the incremental cycle ergometer test used instead of the IET. The electromyography will be recorded during the isometric and dynamic protocols. Differences in muscle function, exercise capacity and cardiorespiratory responses between the LED and placebo applications will be analyzed. The therapeutic effects of LED could minimize muscle fatigue in patients with COPD by increasing exercise tolerance. TRIAL REGISTRATION NUMBER: NCT01448564.


Asunto(s)
Tolerancia al Ejercicio , Contracción Isométrica , Fatiga Muscular , Músculo Esquelético/fisiopatología , Fototerapia/instrumentación , Enfermedad Pulmonar Obstructiva Crónica/terapia , Proyectos de Investigación , Biomarcadores/sangre , Brasil , Protocolos Clínicos , Estudios Cruzados , Método Doble Ciego , Electromiografía , Prueba de Esfuerzo , Volumen Espiratorio Forzado , Humanos , Pulmón/fisiopatología , Músculo Esquelético/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Índice de Severidad de la Enfermedad , Espirometría , Factores de Tiempo , Resultado del Tratamiento
16.
J Bras Pneumol ; 37(3): 380-8, 2011.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-21755195

RESUMEN

In patients with COPD, the degree of functional impairment appears to differ between the upper and lower limbs. Significant dyspnea and fatigue have been reported by these patients when performing tasks with unsupported upper limbs and two mechanisms have been proposed to explain this fact: neuromechanical dysfunction of respiratory muscles; and changes in lung volume during such activities. The neuromechanical dysfunction seen in COPD patients during this type of exercise is related to changes in the breathing pattern, as well as to the simultaneity of afferent and efferent muscle stimuli, resulting in respiratory muscle asynchrony. In addition, the increased ventilation during upper limb exercise in patients with COPD leads to dynamic hyperinflation at different workloads. During lower limb exercises, the strength and endurance of the quadriceps muscle is lower in COPD patients than in healthy subjects. This could by explained by abnormal muscle metabolism (decreased aerobic capacity), dependence on glycolytic metabolism, and rapid accumulation of lactate during exercise. In comparison with lower limb exercises, upper limb exercises result in higher metabolic and ventilatory demands, as well as in a more intense sensation of dyspnea and greater fatigue. Because there are differences between the upper and lower limb muscles in terms of the morphological and functional adaptations in COPD patients, specific protocols for strength training and endurance should be developed and tested for the corresponding muscle groups.


Asunto(s)
Extremidad Inferior/fisiopatología , Músculo Esquelético/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Extremidad Superior/fisiopatología , Humanos , Fuerza Muscular/fisiología , Resistencia Física/fisiología
17.
J. bras. pneumol ; 37(3): 380-388, maio-jun. 2011. ilus, tab
Artículo en Portugués | LILACS | ID: lil-592669

RESUMEN

O prejuízo funcional parece diferir entre membros superiores e membros inferiores de pacientes com DPOC. Dois possíveis mecanismos explicam os sintomas importantes de dispneia e fadiga relatados pelos pacientes ao executar tarefas com membros superiores não sustentados: a disfunção neuromecânica dos músculos respiratórios e a alteração dos volumes pulmonares durante as atividades realizadas com membros superiores. A disfunção neuromecânica está relacionada à alteração do padrão respiratório e à simultaneidade de estímulos aferentes e eferentes musculares, o que causaria a dissincronia na ação dos músculos respiratórios em pacientes com DPOC durante esse tipo de exercício. Adicionalmente, o aumento da ventilação durante os exercícios com membros superiores em pacientes com DPOC induz à hiperinsuflação dinâmica em diferentes cargas de trabalho. Nos membros inferiores, há redução da força e da endurance muscular do quadríceps femoral nos pacientes com DPOC comparados a indivíduos saudáveis. Uma explicação para essas reduções é a anormalidade no metabolismo muscular (diminuição da capacidade aeróbia), a dependência do metabolismo glicolítico e o acúmulo rápido de lactato durante o exercício. Quando contrastadas as atividades de membros superiores e membros inferiores, os exercícios com membros superiores resultam em maior demanda metabólica e ventilatória com mais intensa sensação de dispneia e fadiga. Devido às diferenças nas adaptações morfofuncionais dos músculos dos membros superiores e membros inferiores em pacientes com DPOC, protocolos específicos de treinamento de força e/ou endurance devem ser desenvolvidos e testados para os grupos musculares desses segmentos corporais.


In patients with COPD, the degree of functional impairment appears to differ between the upper and lower limbs. Significant dyspnea and fatigue have been reported by these patients when performing tasks with unsupported upper limbs and two mechanisms have been proposed to explain this fact: neuromechanical dysfunction of respiratory muscles; and changes in lung volume during such activities. The neuromechanical dysfunction seen in COPD patients during this type of exercise is related to changes in the breathing pattern, as well as to the simultaneity of afferent and efferent muscle stimuli, resulting in respiratory muscle asynchrony. In addition, the increased ventilation during upper limb exercise in patients with COPD leads to dynamic hyperinflation at different workloads. During lower limb exercises, the strength and endurance of the quadriceps muscle is lower in COPD patients than in healthy subjects. This could by explained by abnormal muscle metabolism (decreased aerobic capacity), dependence on glycolytic metabolism, and rapid accumulation of lactate during exercise. In comparison with lower limb exercises, upper limb exercises result in higher metabolic and ventilatory demands, as well as in a more intense sensation of dyspnea and greater fatigue. Because there are differences between the upper and lower limb muscles in terms of the morphological and functional adaptations in COPD patients, specific protocols for strength training and endurance should be developed and tested for the corresponding muscle groups.


Asunto(s)
Humanos , Extremidad Inferior/fisiopatología , Músculo Esquelético/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Extremidad Superior/fisiopatología , Fuerza Muscular/fisiología , Resistencia Física/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...