Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5615, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699887

RESUMEN

Topologically Associating Domains (TADs) separate vertebrate genomes into insulated regulatory neighborhoods that focus genome-associated processes. TADs are formed by Cohesin-mediated loop extrusion, with many TAD boundaries consisting of clustered binding sites of the CTCF insulator protein. Here we determine how this clustering of CTCF binding contributes to the blocking of loop extrusion and the insulation between TADs. We identify enrichment of three features of CTCF binding at strong TAD boundaries, consisting of strongly bound and closely spaced CTCF binding peaks, with a further enrichment of DNA-binding motifs within these peaks. Using multi-contact Nano-C analysis in cells with normal and perturbed CTCF binding, we establish that individual CTCF binding sites contribute to the blocking of loop extrusion, but in an incomplete manner. When clustered, individual CTCF binding sites thus create a stepwise insulation between neighboring TADs. Based on these results, we propose a model whereby multiple instances of temporal loop extrusion blocking create strong insulation between TADs.


Asunto(s)
Sitios de Unión , Factor de Unión a CCCTC/genética , Análisis por Conglomerados , Dominios Proteicos
2.
Methods Mol Biol ; 2532: 15-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867243

RESUMEN

Chromosome conformation capture techniques are a set of methods used to determine 3D genome organization through the capture and identification of physical contacts between pairs of genomic loci. Among them, 4C-seq (circular chromosome conformation capture coupled to high-throughput sequencing) allows for the identification and quantification of the sequences interacting with a preselected locus of interest. 4C-seq has been widely used in the literature, mainly to study chromatin loops between enhancers and promoters or between CTCF binding sites and to identify chromatin domain boundaries. As 3D-contacts may be established in an allele-specific manner, we describe an up-to-date allele-specific 4C-seq protocol, starting from the selection of allele-specific viewpoints to Illumina sequencing. This protocol has mainly been optimized for cultured mammalian cells, but can be adapted for other cell types with relatively minor changes in initial steps.


Asunto(s)
Cromatina , Cromosomas , Alelos , Animales , Cromatina/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA