Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38675398

RESUMEN

The LABEXTRACT plant extract bank, featuring diverse members of the Myrtaceae family from Brazilian hot spot regions, provides a promising avenue for bioprospection. Given the pivotal roles of the Spike protein and 3CLpro and PLpro proteases in SARS-CoV-2 infection, this study delves into the correlations between the Myrtaceae species from the Atlantic Forest and these targets, as well as an antiviral activity through both in vitro and in silico analyses. The results uncovered notable inhibitory effects, with Eugenia prasina and E. mosenii standing out, while E. mosenii proved to be multitarget, presenting inhibition values above 72% in the three targets analyzed. All extracts inhibited viral replication in Calu-3 cells (EC50 was lower than 8.3 µg·mL-1). Chemometric analyses, through LC-MS/MS, encompassing prediction models and molecular networking, identified potential active compounds, such as myrtucommulones, described in the literature for their antiviral activity. Docking analyses showed that one undescribed myrtucommulone (m/z 841 [M - H]-) had a higher fitness score when interacting with the targets of this study, including ACE2, Spike, PLpro and 3CLpro of SARS-CoV-2. Also, the study concludes that Myrtaceae extracts, particularly from E. mosenii and E. prasina, exhibit promising inhibitory effects against crucial stages in SARS-CoV-2 infection. Compounds like myrtucommulones emerge as potential anti-SARS-CoV-2 agents, warranting further exploration.

2.
Molecules ; 28(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764472

RESUMEN

The understanding that zidovudine (ZDV or azidothymidine, AZT) inhibits the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 and that chalcogen atoms can increase the bioactivity and reduce the toxicity of AZT has directed our search for the discovery of novel potential anti-coronavirus compounds. Here, the antiviral activity of selenium and tellurium containing AZT derivatives in human type II pneumocytes cell model (Calu-3) and monkey kidney cells (Vero E6) infected with SARS-CoV-2, and their toxic effects on these cells, was evaluated. Cell viability analysis revealed that organoselenium (R3a-R3e) showed lower cytotoxicity than organotellurium (R3f, R3n-R3q), with CC50 ≥ 100 µM. The R3b and R3e were particularly noteworthy for inhibiting viral replication in both cell models and showed better selectivity index. In Vero E6, the EC50 values for R3b and R3e were 2.97 ± 0.62 µM and 1.99 ± 0.42 µM, respectively, while in Calu-3, concentrations of 3.82 ± 1.42 µM and 1.92 ± 0.43 µM (24 h treatment) and 1.33 ± 0.35 µM and 2.31 ± 0.54 µM (48 h) were observed, respectively. The molecular docking calculations were carried out to main protease (Mpro), papain-like protease (PLpro), and RdRp following non-competitive, competitive, and allosteric inhibitory approaches. The in silico results suggested that the organoselenium is a potential non-competitive inhibitor of RdRp, interacting in the allosteric cavity located in the palm region. Overall, the cell-based results indicated that the chalcogen-zidovudine derivatives were more potent than AZT in inhibiting SARS-CoV-2 replication and that the compounds R3b and R3e play an important inhibitory role, expanding the knowledge about the promising therapeutic capacity of organoselenium against COVID-19.


Asunto(s)
COVID-19 , Selenio , Humanos , Antivirales/farmacología , Zidovudina , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Papaína , Péptido Hidrolasas , ARN Polimerasa Dependiente del ARN , Selenio/farmacología
3.
Mem Inst Oswaldo Cruz ; 118: e230090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646742

RESUMEN

BACKGROUND: According to the last 2023 Monkeypox (Mpox) Outbreak Global Map from the Centres for Disease Control and Prevention (CDC), more than 100 countries with no Mpox infection report cases. Brazil stands out in this group and is the second country with the highest number of cases in the last outbreak. OBJECTIVE: To contribute to knowledge of the virus infection effects in a cellular model, which is important for diagnosis infections not yet included in a provider´s differential diagnosis and for developing viral inhibition strategies. METHODS: We describe a virus isolation protocol for a human clinical sample from a patient from Brazil, the viral growth in a cell model through plaque forming units (PFU) assay, reverse transcriptase polymerase chain reaction (RT-PCR) and transmission electron microscopy (TEM). FINDINGS: We follow the viral isolation in Vero cell culture from a Mpox positive clinically diagnosed sample and show the infection effects on cellular structures using a TEM. MAIN CONCLUSIONS: Understanding the impact of viral growth on cellular structures and its replication kinetics may offer better strategies for the development of new drugs with antiviral properties.


Asunto(s)
Mpox , Humanos , Brasil , Bioensayo , Diagnóstico Diferencial , Brotes de Enfermedades
4.
Vaccines (Basel) ; 11(7)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37515038

RESUMEN

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the COVID-19 pandemic, a global public health problem. Despite the numerous studies for drug repurposing, there are only two FDA-approved antiviral agents (Remdesivir and Nirmatrelvir) for non-hospitalized patients with mild-to-moderate COVID-19 symptoms. Consequently, it is pivotal to search for new molecules with anti-SARS-CoV-2 activity and to study their effects in the human immune system. Ebselen (Eb) is an organoselenium compound that is safe for humans and has antioxidant, anti-inflammatory, and antimicrobial properties. Diphenyl diselenide ((PhSe)2) shares several pharmacological properties with Eb and is of low toxicity to mammals. Herein, we investigated Eb and (PhSe)2 anti-SARS-CoV-2 activity in a human pneumocytes cell model (Calu-3) and analyzed their toxic effects on human peripheral blood mononuclear cells (PBMCs). Both compounds significantly inhibited the SARS-CoV-2 replication in Calu-3 cells. The EC50 values for Eb and (PhSe)2 after 24 h post-infection (hpi) were 3.8 µM and 3.9 µM, respectively, and after 48 hpi were 2.6 µM and 3.4 µM. These concentrations are safe for non-infected cells, since the CC50 values found for Eb and (PhSe)2 on Calu-3 were greater than 200 µM. Importantly, the concentration rates tested on viral replication were not toxic to human PBMCs. Therefore, our findings reinforce the efficacy of Eb and demonstrate (PhSe)2 as a new candidate to be tested in future trials against SARS-CoV-2 infection/inflammation conditions.

5.
Molecules ; 28(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37049921

RESUMEN

Traditional medicine shows several treatment protocols for COVID-19 based on natural products, revealing its potential as a possible source of anti-SARS-CoV-2 agents. Ampelozizyphus amazonicus is popularly used in the Brazilian Amazon as a fortifier and tonic, and recently, it has been reported to relieve COVID-19 symptoms. This work aimed to investigate the antiviral potential of A. amazonicus, focusing on the inhibition of spike and ACE2 receptor interaction, a key step in successful infection. Although saponins are the major compounds of this plant and often reported as its active principles, a polyphenol-rich extract was the best inhibitor of the spike and ACE2 interaction. Chemical characterization of A. amazonicus bark extracts by LC-DAD-APCI-MS/MS before and after clean-up steps for polyphenol removal showed that the latter play an essential role in maintaining this activity. The effects of the extracts on viral replication were also assessed, and all samples (aqueous and ethanol extracts) demonstrated in vitro activity, inhibiting viral titers in the supernatant of Calu-3 cells after 24 hpi. By acting both in the SARS-CoV-2 cell entry process and its replication, A. amazonicus bark extracts stand out as a multitarget agent, highlighting the species as a promising candidate in the development of anti-SARS-CoV-2 drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Corteza de la Planta , Espectrometría de Masas en Tándem , Antivirales/farmacología , Unión Proteica
6.
J Chem Inf Model ; 63(7): 2226-2239, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36952618

RESUMEN

The SARS-CoV-2 pandemic has prompted global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro) and the papain-like protease (PLpro) are essential for viral replication and are key targets for therapeutic development. In this work, we investigate the mechanisms of SARS-CoV-2 inhibition by diphenyl diselenide (PhSe)2 which is an archetypal model of diselenides and a renowned potential therapeutic agent. The in vitro inhibitory concentration of (PhSe)2 against SARS-CoV-2 in Vero E6 cells falls in the low micromolar range. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations [level of theory: SMD-B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ] are used to inspect non-covalent inhibition modes of both proteases via π-stacking and the mechanism of covalent (PhSe)2 + Mpro product formation involving the catalytic residue C145, respectively. The in vitro CC50 (24.61 µM) and EC50 (2.39 µM) data indicate that (PhSe)2 is a good inhibitor of the SARS-CoV-2 virus replication in a cell culture model. The in silico findings indicate potential mechanisms of proteases' inhibition by (PhSe)2; in particular, the results of the covalent inhibition here discussed for Mpro, whose thermodynamics is approximatively isoergonic, prompt further investigation in the design of antiviral organodiselenides.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Papaína , Péptido Hidrolasas , Cisteína Endopeptidasas/química , Proteínas no Estructurales Virales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Antivirales/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular
7.
Mem. Inst. Oswaldo Cruz ; 118: e230090, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1506730

RESUMEN

BACKGROUND According to the last 2023 Monkeypox (Mpox) Outbreak Global Map from the Centres for Disease Control and Prevention (CDC), more than 100 countries with no Mpox infection report cases. Brazil stands out in this group and is the second country with the highest number of cases in the last outbreak. OBJECTIVE To contribute to knowledge of the virus infection effects in a cellular model, which is important for diagnosis infections not yet included in a provider´s differential diagnosis and for developing viral inhibition strategies. METHODS We describe a virus isolation protocol for a human clinical sample from a patient from Brazil, the viral growth in a cell model through plaque forming units (PFU) assay, reverse transcriptase polymerase chain reaction (RT-PCR) and transmission electron microscopy (TEM). FINDINGS We follow the viral isolation in Vero cell culture from a Mpox positive clinically diagnosed sample and show the infection effects on cellular structures using a TEM. MAIN CONCLUSIONS Understanding the impact of viral growth on cellular structures and its replication kinetics may offer better strategies for the development of new drugs with antiviral properties.

8.
PLoS One ; 17(10): e0274943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36256646

RESUMEN

The emergence of potentially pandemic viruses has resulted in preparedness efforts to develop candidate vaccines and adjuvant formulations. We evaluated the dose-sparing effect and safety of two distinct squalene-based oil-in-water adjuvant emulsion formulations (IB160 and SE) with influenza A/H7N9 antigen. This phase I, randomized, double-blind, placebo-controlled, dose-finding trial (NCT03330899), enrolled 432 healthy volunteers aged 18 to 59. Participants were randomly allocated to 8 groups: 1A) IB160 + 15µg H7N9, 1B) IB160 + 7.5µg H7N9, 1C) IB160 + 3.75µg H7N9, 2A) SE + 15µg H7N9, 2B) SE + 7.5µg H7N9, 2C) SE + 3.75µg H7N9, 3) unadjuvanted vaccine 15µg H7N9 and 4) placebo. Immunogenicity was evaluated through haemagglutination inhibition (HI) and microneutralization (MN) tests. Safety was evaluated by monitoring local and systemic, solicited and unsolicited adverse events (AE) and reactions (AR) 7 and 28 days after each study injection, respectively, whereas serious adverse events (SAE) were monitored up to 194 days post-second dose. A greater increase in antibody geometric mean titers (GMT) was observed in groups receiving adjuvanted vaccines. Vaccinees receiving IB160-adjuvanted formulations showed the greatest response in group 1B, which induced an HI GMT increase of 4.7 times, HI titers ≥40 in 45.2% of participants (MN titers ≥40 in 80.8%). Vaccinees receiving SE-adjuvanted vaccines showed the greatest response in group 2A, with an HI GMT increase of 2.5 times, HI titers ≥40 in 22.9% of participants (MN titers ≥40 in 65.7%). Frequencies of AE and AR were similar among groups. Pain at the administration site and headache were the most frequent local and systemic solicited ARs. The vaccine candidates were safe and the adjuvanted formulations have a potential dose-sparing effect on immunogenicity against influenza A/H7N9. The magnitude of this effect could be further explored.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Escualeno , Pandemias/prevención & control , Polisorbatos , Emulsiones , Anticuerpos Antivirales , Pruebas de Inhibición de Hemaglutinación , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Agua
9.
Front Public Health ; 10: 944277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187691

RESUMEN

The influenza A virus (IAV) is of a major public health concern as it causes annual epidemics and has the potential to cause pandemics. At present, the neuraminidase inhibitors (NAIs) are the most widely used anti-influenza drugs, but, more recently, the drug baloxavir marboxil (BXM), a polymerase inhibitor, has also been licensed in some countries. Mutations in the viral genes that encode the antiviral targets can lead to treatment resistance. Worldwide, a low prevalence of antiviral resistant strains has been reported. Despite that, this situation can change rapidly, and resistant strain surveillance is a priority. Thus, the aim of this was to evaluate Brazilian IAVs antiviral resistance from 2017 to 2019 through the identification of viral mutations associated with reduced inhibition of the drugs and by testing the susceptibility of IAV isolates to oseltamivir (OST), the most widely used NAI drug in the country. Initially, we analyzed 282 influenza A(H1N1)pdm09 and 455 A(H3N2) genetic sequences available on GISAID. The amino acid substitution (AAS) NA:S247N was detected in one A(H1N1)pdm09 strain. We also identified NA:I222V (n = 6) and NA:N329K (n = 1) in A(H3N2) strains. In addition, we performed a molecular screening for NA:H275Y in 437 A(H1N1)pdm09 samples, by pyrosequencing, which revealed a single virus harboring this mutation. Furthermore, the determination of OST IC50 values for 222 A(H1N1)pdm09 and 83 A(H3N2) isolates revealed that all isolates presented a normal susceptibility profile to the drug. Interestingly, we detected one A(H3N2) virus presenting with PA:E119D AAS. Moreover, the majority of the IAV sequences had the M2:S31N adamantanes resistant marker. In conclusion, we show a low prevalence of Brazilian IAV strains with NAI resistance markers, in accordance with what is reported worldwide, indicating that NAIs still remain an option for the treatment of influenza infections in Brazil. However, surveillance of influenza resistance should be strengthened in the country for improving the representativeness of investigated viruses and the robustness of the analysis.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Antivirales/farmacología , Antivirales/uso terapéutico , Brasil/epidemiología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Guanidinas/farmacología , Guanidinas/uso terapéutico , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Neuraminidasa/genética , Neuraminidasa/metabolismo , Neuraminidasa/uso terapéutico , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Prevalencia , Estaciones del Año
10.
Sci Rep ; 12(1): 8118, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581241

RESUMEN

In the current COVID-19 pandemic, the next generation of innovative materials with enhanced anti-SARS-CoV-2 activity is urgently needed to prevent the spread of this virus within the community. Herein, we report the synthesis of chitosan/α-Ag2WO4 composites synthetized by femtosecond laser irradiation. The antimicrobial activity against Escherichia coli, Methicilin-susceptible Staphylococcus aureus (MSSA), and Candida albicans was determined by estimating the minimum inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC). To assess the biocompatibility of chitosan/α-Ag2WO4 composites in a range involving MIC and MBC/MFC on keratinocytes cells (NOK-si), an alamarBlue™ assay and an MTT assay were carried out. The SARS-CoV-2 virucidal effects was analyzed in Vero E6 cells through viral titer quantified in cell culture supernatant by PFU/mL assay. Our results showed a very similar antimicrobial activity of chitosan/α-Ag2WO4 3.3 and 6.6, with the last one demonstrating a slightly better action against MSSA. The chitosan/α-Ag2WO4 9.9 showed a wide range of antimicrobial activity (0.49-31.25 µg/mL). The cytotoxicity outcomes by alamarBlue™ revealed that the concentrations of interest (MIC and MBC/MFC) were considered non-cytotoxic to all composites after 72 h of exposure. The Chitosan/α-Ag2WO4 (CS6.6/α-Ag2WO4) composite reduced the SARS-CoV-2 viral titer quantification up to 80% of the controls. Then, our results suggest that these composites are highly efficient materials to kill bacteria (Escherichia coli, Methicillin-susceptible Staphylococcus aureus, and the yeast strain Candida albicans), in addition to inactivating SARS-CoV-2 by contact, through ROS production.


Asunto(s)
COVID-19 , Quitosano , Infecciones por Escherichia coli , Infecciones Estafilocócicas , Antibacterianos/farmacología , Candida albicans , Quitosano/farmacología , Escherichia coli , Humanos , Rayos Láser , Pruebas de Sensibilidad Microbiana , Pandemias , SARS-CoV-2 , Staphylococcus aureus
11.
Viruses ; 14(2)2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35215794

RESUMEN

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted public health and the world economy and fueled a worldwide race to approve therapeutic and prophylactic agents, but so far there are no specific antiviral drugs. Understanding the biology of the virus is the first step in structuring strategies to combat it, and in this context several studies have been conducted with the aim of understanding the replication mechanism of SARS-CoV-2 in vitro systems. In this work, studies using transmission and scanning electron microscopy and 3D electron microscopy modeling were performed with the goal of characterizing the morphogenesis of SARS-CoV-2 in Vero-E6 cells. Several ultrastructural changes were observed-such as syncytia formation, cytoplasmic membrane projections, lipid droplets accumulation, proliferation of double-membrane vesicles derived from the rough endoplasmic reticulum, and alteration of mitochondria. The entry of the virus into cells occurred through endocytosis. Viral particles were observed attached to the cell membrane and in various cellular compartments, and extrusion of viral progeny took place by exocytosis. These findings allow us to infer that Vero-E6 cells are highly susceptible to SARS-CoV-2 infection as described in the literature and their replication cycle is similar to that described with SARS-CoV and MERS-CoV in vitro models.


Asunto(s)
Microscopía Electrónica de Transmisión/métodos , Microscopía Electrónica/métodos , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestructura , Animales , Línea Celular , Chlorocebus aethiops , SARS-CoV-2/química , Células Vero , Internalización del Virus , Replicación Viral
12.
Viruses ; 14(2)2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35215969

RESUMEN

Despite the development of specific therapies against severe acute respiratory coronavirus 2 (SARS-CoV-2), the continuous investigation of the mechanism of action of clinically approved drugs could provide new information on the druggable steps of virus-host interaction. For example, chloroquine (CQ)/hydroxychloroquine (HCQ) lacks in vitro activity against SARS-CoV-2 in TMPRSS2-expressing cells, such as human pneumocyte cell line Calu-3, and likewise, failed to show clinical benefit in the Solidarity and Recovery clinical trials. Another antimalarial drug, mefloquine, which is not a 4-aminoquinoline like CQ/HCQ, has emerged as a potential anti-SARS-CoV-2 antiviral in vitro and has also been previously repurposed for respiratory diseases. Here, we investigated the anti-SARS-CoV-2 mechanism of action of mefloquine in cells relevant for the physiopathology of COVID-19, such as Calu-3 cells (that recapitulate type II pneumocytes) and monocytes. Molecular pathways modulated by mefloquine were assessed by differential expression analysis, and confirmed by biological assays. A PBPK model was developed to assess mefloquine's optimal doses for achieving therapeutic concentrations. Mefloquine inhibited SARS-CoV-2 replication in Calu-3, with an EC50 of 1.2 µM and EC90 of 5.3 µM. It reduced SARS-CoV-2 RNA levels in monocytes and prevented virus-induced enhancement of IL-6 and TNF-α. Mefloquine reduced SARS-CoV-2 entry and synergized with Remdesivir. Mefloquine's pharmacological parameters are consistent with its plasma exposure in humans and its tissue-to-plasma predicted coefficient points suggesting that mefloquine may accumulate in the lungs. Altogether, our data indicate that mefloquine's chemical structure could represent an orally available host-acting agent to inhibit virus entry.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Antivirales/farmacología , Cloroquina/farmacología , Mefloquina/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Células Epiteliales Alveolares/virología , Línea Celular , Reposicionamiento de Medicamentos/métodos , Humanos , Serina Endopeptidasas/genética , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
13.
Molecules ; 27(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35056716

RESUMEN

Siparuna glycycarpa occurs in the Amazon region, and some species of this genus are used in Brazilian folk medicine. A recent study showed the inhibitory effect of this species against influenza A(H1N1)pdm09 virus, and in order to acquire active fractions, a polar solvent system n-butanol-methanol-water (9:1:10, v/v) was selected and used for bioassay-guided fractionation of n-butanol extract by centrifugal partition chromatography (CPC). The upper phase was used as stationary phase and the lower phase as mobile (descending mode). Among the collected fractions, the ones coded SGA, SGC, SGD, and SGO showed the highest antiviral inhibition levels (above 74%) at 100 µg·mL-1 after 24 h of infection. The bioactive fractions chemical profiles were investigated by LC-HRMS/MS data in positive and negative ionization modes exploring the Global Natural Products Social Molecular Networking (GNPS) platform to build a molecular network. Benzylisoquinoline alkaloids were annotated in the fractions coded SGA, SGC, and SGD collected during elution step. Aporphine alkaloids, O-glycosylated flavonoids, and dihydrochalcones in SGO were acquired with the change of mobile phase from lower aqueous to upper organic. Benzylisoquinolinic and aporphine alkaloids as well as glycosylated flavonoids were annotated in the most bioactive fractions suggesting this group of compounds as responsible for antiviral activity.


Asunto(s)
1-Butanol
14.
Rev Bras Farmacogn ; 31(5): 658-666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305198

RESUMEN

The novel coronavirus SARS-CoV-2 has been affecting the world, causing severe pneumonia and acute respiratory syndrome, leading people to death. Therefore, the search for anti-SARS-CoV-2 compounds is pivotal for public health. Natural products may present sources of bioactive compounds; among them, flavonoids are known in literature for their antiviral activity. Siparuna species are used in Brazilian folk medicine for the treatment of colds and flu. This work describes the isolation of 3,3',4'-tri-O-methyl-quercetin, 3,7,3',4'-tetra-O-methyl-quercetin (retusin), and 3,7-di-O-methyl-kaempferol (kumatakenin) from the dichloromethane extract of leaves of Siparuna cristata (Poepp. & Endl.) A.DC., Siparunaceae, using high-speed countercurrent chromatography in addition to the investigation of their inhibitory effect against SARS-CoV-2 viral replication. Retusin and kumatakenin inhibited SARS-CoV-2 replication in Vero E6 and Calu-3 cells, with a selective index greater than lopinavir/ritonavir and chloroquine, used as control. Flavonoids and their derivatives may stand for target compounds to be tested in future clinical trials to enrich the drug arsenal against coronavirus infections. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s43450-021-00162-5.

15.
Mem Inst Oswaldo Cruz ; 116: e200443, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33566951

RESUMEN

BACKGROUND: The coronaviruses (CoVs) called the attention of the world for causing outbreaks of severe acute respiratory syndrome (SARS-CoV), in Asia in 2002-03, and respiratory disease in the Middle East (MERS-CoV), in 2012. In December 2019, yet again a new coronavirus (SARS-CoV-2) first identified in Wuhan, China, was associated with a severe respiratory infection, known today as COVID-19. This new virus quickly spread throughout China and 30 additional countries. As result, the World Health Organization (WHO) elevated the status of the COVID-19 outbreak from emergency of international concern to pandemic on March 11, 2020. The impact of COVID-19 on public health and economy fueled a worldwide race to approve therapeutic and prophylactic agents, but so far, there are no specific antiviral drugs or vaccines available. In current scenario, the development of in vitro systems for viral mass production and for testing antiviral and vaccine candidates proves to be an urgent matter. OBJECTIVE: The objective of this paper is study the biology of SARS-CoV-2 in Vero-E6 cells at the ultrastructural level. METHODS: In this study, we documented, by transmission electron microscopy and real-time reverse transcription polymerase chain reaction (RT-PCR), the infection of Vero-E6 cells with SARS-CoV-2 samples isolated from Brazilian patients. FINDINGS: The infected cells presented cytopathic effects and SARS-CoV-2 particles were observed attached to the cell surface and inside cytoplasmic vesicles. The entry of the virus into cells occurred through the endocytic pathway or by fusion of the viral envelope with the cell membrane. Assembled nucleocapsids were verified inside rough endoplasmic reticulum cisterns (RER). Viral maturation seemed to occur by budding of viral particles from the RER into smooth membrane vesicles. MAIN CONCLUSIONS: Therefore, the susceptibility of Vero-E6 cells to SARS-CoV-2 infection and the viral pathway inside the cells were demonstrated by ultrastructural analysis.


Asunto(s)
Efecto Citopatogénico Viral , Vesículas Citoplasmáticas/virología , SARS-CoV-2/fisiología , Células Vero/virología , Animales , Chlorocebus aethiops , Endocitosis , Retículo Endoplásmico/virología , Humanos , Microscopía Electrónica de Transmisión , Nucleocápside , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Internalización del Virus
18.
PLoS One ; 10(9): e0137090, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26327119

RESUMEN

Although previous studies have described opposing states in upwelling regions, i.e., the rise of cold nutrient-rich waters and prevalence of surface warm nutrient-poor waters, few have addressed the transition from one state to the other. This study aimed to describe the microbial and viral structure during this transition and was able to obtain the taxonomic and metabolic compositions as well as physical-chemical data. This integrated approach allowed for a better understanding of the dynamics of the downwelling upwelling transition, suggesting that a wealth of metabolic processes and ecological interactions are occurring in the minute fractions of the plankton (femto, pico, nano). These processes and interactions included evidence of microbial predominance during downwelling (with nitrogen recycling and aerobic anoxygenic photosynthesis), different viral predation pressures over primary production in different states (cyanobacteria vs eukaryotes), and a predominance of diatoms and selected bacterial and archaeal groups during upwelling (with the occurrence of a wealth of nitrogen metabolism involving ammonia). Thus, the results provided insights into which microbes, viruses and microbial-mediated processes are probably important in the functioning of upwelling systems.


Asunto(s)
Ecosistema , Microbiología del Agua , Bacterias/genética , Bacterias/aislamiento & purificación , Agua Dulce/microbiología , Agua de Mar/microbiología , Virus/genética , Virus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...