Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Behav Neurosci ; 16: 1008556, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338879

RESUMEN

Early-life adversity (ELA) can induce persistent neurological changes and increase the risk for developing affective or substance use disorders. Disruptions to the reward circuitry of the brain and pathways serving motivation and emotion have been implicated in the link between ELA and altered adult behavior. The molecular mechanisms that mediate the long-term effects of ELA, however, are not fully understood. We examined whether ELA in the form of neonatal maternal separation (MatSep) modifies behavior and synaptic protein expression in adults. We hypothesized that MatSep would affect dopaminergic and glutamatergic signaling and enhance sensitivity to methamphetamine (Meth) reward or increase anxiety. Male Wistar rats were subjected to MatSep for 180 min/d on postnatal days (PND) 2-14 and allowed to grow to adulthood (PND 60) with no further manipulation. The hippocampus (Hipp), medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and caudate putamen (CPu) were isolated from one subgroup of animals and subjected to Western blot and protein quantitation for tyrosine hydroxylase (TH), α-synuclein (ALPHA), NMDA receptor (NMDAR), dopamine receptor-1 (D1) and -2 (D2), dopamine transporter (DAT), and postsynaptic density 95 (PSD95). Separate group of animals were tested for anxiety-like behavior and conditioned place preference (CPP) to Meth at 0.0, 0.1, and 1.0 mg/kg doses. MatSep rats displayed an increase in basal levels of anxiety-like behavior compared to control animals. MatSep rats also demonstrated CPP to Meth, but their responses did not differ significantly from controls at any drug dose. Increased NMDAR, D2, and ALPHA expression was observed in the NAc and CPu following MatSep; D2 and ALPHA levels were also elevated in the mPFC, along with DAT. MatSep rats had reduced D1 expression in the mPFC and Hipp, with the Hipp also showing a reduction in D2. Only the CPu showed elevated TH and decreased DAT expression levels. No significant changes were found in PSD95 expression in MatSep rats. In conclusion, ELA is associated with long-lasting and region-specific changes in synaptic protein expression that diminish dopamine neurotransmission and increase anxiety-like behavior in adults. These findings illustrate potential mechanisms through which ELA may increase vulnerability to stress-related illness.

2.
Brain Behav Immun Health ; 7: 100124, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32835300

RESUMEN

Suicidality is one of the leading causes of death among young adults in the United States and represents a significant health problem worldwide. The suicide rate among adolescents in the United States has increased dramatically in the latest years and has been accompanied by considerable changes in youth suicide, especially among young girls. Henceforth, we need a good understanding of the risk factors contributing to suicidal behavior in youth. An explanatory model for suicidal behavior that links clinical and psychological risk factors to the underlying neurobiological, neuropsychological abnormalities related to suicidal behavior might predict to help identify treatment options and have empirical value. Our explanatory model proposes that developmental, biological factors (genetics, proteomics, epigenetics, immunological) and psychological or clinical (childhood adversities) may have causal relevance to the changes associated with suicidal behavior. In this way, our model integrates findings from several perspectives in suicidality and attempts to explain the relationship between various neurobiological, genetic, and clinical observations in suicide research, offering a comprehensive hypothesis to facilitate understanding of this complex outcome. Unraveling the knowledge of the complex interplay of psychological, biological, sociobiological, and clinical risk factors is highly essential, concerning the development of effective prevention strategy plans for suicidal ideation and suicide.

3.
ACS Med Chem Lett ; 10(6): 904-910, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31223446

RESUMEN

In recent years, mammalian Glycine transporter 2 (GlyT2) has emerged as a promising target for the development of compounds against chronic pain states. In our current work, we discovered a new set of promising hits that inhibit the glycine transporter at nano- and micromolar activity and have excellent selectivity over GlyT1 (as shown by in vitro studies) using a newly designed virtual screening (VS) protocol that combines a structure-based pharmacophore and docking screens with a success rate of 75%. Furthermore, the free energy perturbation calculations and molecular dynamics (MD) studies revealed the GlyT2 amino acid residues critical for the binding and selectivity of both Glycine and our Hit1 compound. The FEP+ results well-matched with the available literature mutational data proving the quality of the generated GlyT2 structure. On the basis of these results, we propose that our hit compounds may lead to new chronic pain agents to address unmet and challenging clinical needs.

4.
Behav Brain Res ; 296: 125-128, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26367473

RESUMEN

Previous studies have demonstrated that there are persistent changes in dopamine systems following withdrawal from methamphetamine (METH). This study examined changes in striatal dopamine transporter (DAT), tyrosine hydroxylase (TH) and dopamine receptor 2 (D2) 72 h after withdrawal from METH intravenous self- administration (IVSA). Rats were given limited (1h) or extended (6h) access to METH IVSA (0.05 mg/kg/0.1 ml infusion) for 22 days. Controls did not receive METH IVSA. The rats given extended access to IVSA displayed higher METH intake during the first hour of drug access compared to rats given limited access. Extended access to METH also produced a concomitant increase in striatal DAT levels relative to drug-naïve controls. There were no changes in TH or D2 levels across groups. Previous studies have reported a decrease in striatal DAT levels during protracted periods (>7 days) of withdrawal from METH IVSA. This study extends previous work by showing an increase in striatal DAT protein expression during an earlier time point of withdrawal from this drug. These results are an important step toward understanding the dynamic changes in dopamine systems that occur during different time points of withdrawal from METH IVSA.


Asunto(s)
Dopaminérgicos/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Metanfetamina/farmacología , Neostriado/metabolismo , Receptores de Dopamina D2/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Dopaminérgicos/administración & dosificación , Masculino , Metanfetamina/administración & dosificación , Ratas , Ratas Wistar , Factores de Tiempo , Regulación hacia Arriba
5.
Arch Microbiol ; 193(10): 701-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21553045

RESUMEN

Ustilago maydis is a fungal pathogen which is exposed during its life cycle to both abiotic and biotic stresses before and after the infection of maize. To cope with extreme environmental changes, microorganisms usually accumulate the disaccharide trehalose. We have investigated both the accumulation of trehalose and the activity of trehalase during the adaptation of U. maydis haploid cells to thermal, sorbitol, and NaCl stresses. Sorbitol and sodium chloride induced sustained accumulation of trehalose, while a transient increase was observed under heat stress. Sorbitol stressed cells showed higher trehalase activity compared with control cells and to those stressed by NaCl and high temperature. Addition of cycloheximide, a protein synthesis inhibitor, did not affect the trehalose accumulation during the first 15 min, but basal levels of trehalose were reached after the second period of 15 min. The proteomic analysis of the response of U. maydis to temperature, sorbitol, and salt stresses indicated a complex pattern which highlights the change of 18 proteins involved in carbohydrate and amino acid metabolism, protein folding, redox regulation, ion homeostasis, and stress response. We hypothesize that trehalose accumulation during sorbitol stress in U. maydis might be related to the adaptation of this organism during plant infection.


Asunto(s)
Respuesta al Choque Térmico , Cloruro de Sodio/farmacología , Trehalasa/metabolismo , Trehalosa/metabolismo , Ustilago/fisiología , Adaptación Fisiológica , Cicloheximida/farmacología , Proteínas Fúngicas/análisis , Calor , Presión Osmótica , Inhibidores de la Síntesis de la Proteína/farmacología , Proteoma/análisis , Sorbitol/farmacología , Espectrometría de Masas en Tándem , Ustilago/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...