Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO Mol Med ; 9(10): 1379-1397, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28754744

RESUMEN

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic form of isolated gonadotropin-releasing hormone (GnRH) deficiency caused by mutations in > 30 genes. Fibroblast growth factor receptor 1 (FGFR1) is the most frequently mutated gene in CHH and is implicated in GnRH neuron development and maintenance. We note that a CHH FGFR1 mutation (p.L342S) decreases signaling of the metabolic regulator FGF21 by impairing the association of FGFR1 with ß-Klotho (KLB), the obligate co-receptor for FGF21. We thus hypothesized that the metabolic FGF21/KLB/FGFR1 pathway is involved in CHH Genetic screening of 334 CHH patients identified seven heterozygous loss-of-function KLB mutations in 13 patients (4%). Most patients with KLB mutations (9/13) exhibited metabolic defects. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Peripheral FGF21 administration could indeed reach GnRH neurons through circumventricular organs in the hypothalamus. We conclude that FGF21/KLB/FGFR1 signaling plays an essential role in GnRH biology, potentially linking metabolism with reproduction.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Síndrome de Kallmann/genética , Proteínas de la Membrana/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Células COS , Caenorhabditis elegans/genética , Chlorocebus aethiops , Estudios de Cohortes , Femenino , Factores de Crecimiento de Fibroblastos/genética , Hormona Liberadora de Gonadotropina/genética , Células HEK293 , Humanos , Hipotálamo/metabolismo , Proteínas Klotho , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Neuronas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
3.
Am J Hum Genet ; 92(5): 725-43, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23643382

RESUMEN

Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ~12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called "FGF8 synexpression" group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/genética , Factores de Crecimiento de Fibroblastos/genética , Predisposición Genética a la Enfermedad/genética , Hipogonadismo/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Receptores de Interleucina/genética , Algoritmos , Animales , Secuencia de Bases , Biología Computacional , Femenino , Estudios de Asociación Genética , Humanos , Inmunohistoquímica , Patrón de Herencia/genética , Masculino , Glicoproteínas de Membrana , Ratones , Datos de Secuencia Molecular , Mutación/genética , Análisis de Secuencia de ADN , Homología de Secuencia , Resonancia por Plasmón de Superficie
4.
Growth Factors ; 30(2): 117-23, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22292523

RESUMEN

Fibroblast growth factors (FGFs) are important molecules that control bone formation. FGF act by activating FGF receptors (FGFRs) and downstream signaling pathways that control cells of the osteoblast lineage. Recent advances have been made in the identification of FGF/FGFR signaling pathways that control osteogenesis. Indeed, studies of mouse and human models provided novel insights into the signaling pathways that control bone formation. Genomic studies also highlighted the implication of molecular targets of FGF/FGFR signaling regulating osteoblastogenesis. Recent studies further revealed the important role of crosstalks between FGF/FGFR signaling and other signaling pathways in the regulation of osteogenesis. Finally, the importance of the mechanisms modulating FGFR degradation in the control of osteoblast differentiation has been recently revealed. This short review summarizes the recently described mechanisms underlying FGF/FGFR signaling that are involved in the control of osteoblastogenesis. This knowledge may have potential therapeutic implications in skeletal disorders characterized by abnormal bone formation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Osteogénesis/efectos de los fármacos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , Animales , Diferenciación Celular , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Osteoblastos/citología , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/fisiología
5.
Mol Cell Endocrinol ; 346(1-2): 37-43, 2011 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-21664428

RESUMEN

Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Sistemas Neurosecretores/fisiología , Reproducción/fisiología , Interacción Gen-Ambiente , Humanos , Mutación , Sistemas Neurosecretores/metabolismo , Fenotipo , Reproducción/genética
6.
J Biol Chem ; 286(27): 24443-50, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21596750

RESUMEN

Human bone marrow-derived mesenchymal stromal cells (hMSCs) have the capacity to differentiate into several cell types including osteoblasts and are therefore an important cell source for bone tissue regeneration. A crucial issue is to identify mechanisms that trigger hMSC osteoblast differentiation to promote osteogenic potential. Casitas B lineage lymphoma (Cbl) is an E3 ubiquitin ligase that ubiquitinates and targets several molecules for degradation. We hypothesized that attenuation of Cbl-mediated degradation of receptor tyrosine kinases (RTKs) may promote osteogenic differentiation in hMSCs. We show here that specific inhibition of Cbl interaction with RTKs using a Cbl mutant (G306E) promotes expression of osteoblast markers (Runx2, alkaline phosphatase, type 1 collagen, osteocalcin) and increases osteogenic differentiation in clonal bone marrow-derived hMSCs and primary hMSCs. Analysis of molecular mechanisms revealed that the Cbl mutant increased PDGF receptor α and FGF receptor 2 but not EGF receptor expression in hMSCs, resulting in increased ERK1/2 and PI3K signaling. Pharmacological inhibition of FGFR or PDGFR abrogated in vitro osteogenesis induced by the Cbl mutant. The data reveal that specific inhibition of Cbl interaction with RTKs promotes the osteogenic differentiation program in hMSCs in part by decreased Cbl-mediated PDGFRα and FGFR2 ubiquitination, providing a novel mechanistic approach targeting Cbl to promote the osteogenic capacity of hMSCs.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Mutación Missense , Proteína Oncogénica v-cbl/metabolismo , Osteogénesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Sustitución de Aminoácidos , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Células de la Médula Ósea/citología , Línea Celular Transformada , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Oncogénica v-cbl/antagonistas & inhibidores , Proteína Oncogénica v-cbl/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células del Estroma/citología , Células del Estroma/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética
7.
Sci Signal ; 3(146): re9, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-21045207

RESUMEN

Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.


Asunto(s)
Condrogénesis/fisiología , Osteogénesis/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Animales , Enfermedades del Desarrollo Óseo/metabolismo , Enfermedades del Desarrollo Óseo/terapia , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Mutación , Osteogénesis/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética
8.
Gene ; 468(1-2): 1-7, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20696219

RESUMEN

Basic Helix-loop-Helix (bHLH) factors play important roles in development and disease. Recent functional and genetic analyses revealed that the bHLH factor Twist1 is a critical modulator of mesenchymal cell fate during skeletal development. Specifically, studies in mice and humans showed that Twist1 controls mesenchymal stem cell differentiation into chondrocytes, osteoblasts or adipocytes via direct and indirect mechanisms. In a physiological context, Twist1 targets several molecular mechanisms to induce positive or negative effects on osteoblastic cell growth, differentiation and survival. In a pathological context, Twist1 loss-of-function mutations induce premature cranial suture fusion (craniosynostosis) in the Saethre-Chotzen syndrome. In this syndrome, expansion of cranial osteogenesis at the suture level results from alterations in the balance between osteoprogenitor cell proliferation, differentiation and apoptosis. These studies provide mechanisms by which Twist1 plays a pivotal role in skeletal cell fate in normal and pathologic conditions, which may offer therapeutic perspectives in conditions where mesenchymal cell behaviour is compromised.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Proteína 1 Relacionada con Twist/metabolismo , Animales , Diferenciación Celular , Craneosinostosis/patología , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo
9.
J Cell Biochem ; 110(5): 1147-54, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20564211

RESUMEN

The capacity of mesenchymal stem cells (MSCs) to differentiate into functional osteoblasts is tightly controlled by transcription factors that trigger osteoblast commitment and differentiation. The role of Twist1, a basic helix-loop-helix (bHLH) transcription factor, in osteogenic differentiation of MSCs remains unclear. Here we investigated the role of Twist1 in the osteogenic differentiation program of murine C3H10T1/2 mesenchymal cells. We showed that molecular silencing of Twist1 using short hairpin RNA (shRNA) expression moderately increased C3H10T1/2 cell proliferation and had no effect on cell survival. In contrast, Twist1 silencing enhanced osteoblast gene expression and matrix mineralization in vitro. Biochemical analyses revealed that Twist1 silencing increased the expression of FGFR2 protein level, which was reduced by a mutant Runx2. Consistent with this finding, Twist1 silencing increased ERK1/2 and PI3K signaling. Moreover, molecular or pharmacological inhibition of FGFR2 or of ERK1/2 and PI3K signaling partly abolished the increased osteoblast gene expression induced by Twist1 silencing in C3H10T1/2 cells. These results reveal that Twist1 silencing upregulates osteoblast differentiation of murine mesenchymal cells in part via activation of FGFR2 expression and downstream signaling pathways, which provides novel insights into the molecular signals by which this transcription factor regulates the osteogenic differentiation program in MSCs.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Interferencia de ARN , Proteína 1 Relacionada con Twist/metabolismo , Animales , Western Blotting , Línea Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C3H , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Nucleares/genética , Osteoblastos/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Proteína 1 Relacionada con Twist/genética
10.
J Cell Physiol ; 224(2): 509-15, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20432451

RESUMEN

The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV-FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV-FGF18 is mediated by activation of ERK1/2-MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2-mediated ERK1/2-MAPKs and PI3K signaling.


Asunto(s)
Comunicación Autocrina/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Dexametasona/farmacología , Factores de Crecimiento de Fibroblastos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Animales , Diferenciación Celular/genética , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , Ratones , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
Hum Mol Genet ; 19(9): 1678-89, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20124286

RESUMEN

Dysregulations of osteoblast function induced by gain-of-function genetic mutations in fibroblast growth factor receptors (FGFRs) cause premature fusion of cranial sutures in syndromic craniosynostosis. The pathogenic signaling mechanisms induced by FGFR genetic mutations in human craniosynostosis remain largely unknown. In this study, we have used microarray analysis to investigate the signaling pathways that are activated by FGFR2 mutations in Apert craniosynostosis. Transcriptomic analysis revealed that EGFR and PDGFRalpha expression is abnormally increased in human Apert calvaria osteoblasts compared with wild-type cells. Quantitative RT-PCR and western blot analyses in Apert osteoblasts and immunohistochemical analysis of Apert sutures confirmed the increased EGFR and PDGFRalpha expression in vitro and in vivo. We demonstrate that pharmacological inhibition of EGFR and PDGFR reduces the pathological upregulation of phenotypic osteoblast genes and in vitro matrix mineralization in Apert osteoblasts. Investigation of the underlying molecular mechanisms revealed that activated FGFR2 enhances EGFR and PDGFRalpha mRNA expression via activation of PKCalpha-dependent AP-1 transcriptional activity. We also show that the increased EGFR protein expression in Apert osteoblasts results in part from a post-transcriptional mechanism involving increased Sprouty2-Cbl interaction, leading to Cbl sequestration and reduced EGFR ubiquitination. These data reveal novel molecular crosstalks between activated FGFR2, EGFR and PDGFRalpha that functionally contribute to the osteoblastic dysfunction in Apert craniosynostosis, which may provide a molecular basis for novel therapeutic approaches in this severe skeletal disorder.


Asunto(s)
Acrocefalosindactilia/fisiopatología , Osteoblastos/fisiología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/fisiología , Regulación hacia Arriba , Acrocefalosindactilia/genética , Acrocefalosindactilia/metabolismo , Western Blotting , Análisis Mutacional de ADN , Cartilla de ADN/genética , Receptores ErbB , Feto , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Inmunoprecipitación , Análisis por Micromatrices , Mutación/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
J Biol Chem ; 284(8): 4897-904, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19117954

RESUMEN

Mesenchymal stem cells (MSCs) are able to differentiate into several lineages including osteoblasts. The signaling mechanisms involved in the osteogenic differentiation of MSCs are however not fully understood. We investigated the role of fibroblast growth factor receptor 2 (FGFR2) in osteoblast committment and differentiation of murine mesenchymal C3H10T1/2 cells stably transfected with wild type (WT) or activated FGFR2 due to Apert S252W genetic mutation (MT). WT FGFR2 slightly increased, whereas MT FGFR2 strongly increased, FGFR2 tyrosine phosphorylation, indicating activation of the receptor. WT and MT FGFR2 increased C3H10T1/2 cell proliferation but not survival. Both WT and MT FGFR2 increased early and late osteoblast gene expression and matrix mineralization. Forced expression of WT and MT FGFR2 also increased osteoblast gene expression in MC3T3-E1 calvaria osteoblasts. In both cell types, MT FGFR2 was more effective than WT FGFR2. In contrast, WT and MT FGFR2 decreased adipocyte differentiation of C3H10T1/2 cells. WT and MT FGFR2 induced ERK1/2 but not JNK or PI3K/AKT phosphorylation. MT, but not WT, also increased protein kinase C (PKC) activity. Pharmacological inhibition of ERK1/2 prevented cell proliferation induced by WT and MT FGFR2. Using dominant-negative ERK and PKCalpha vectors, we demonstrated that WT and MT FGFR2 promoted osteoblast gene expression through ERK1/2 and PKCalpha signaling, respectively. This study identifies FGFR2 as a novel regulatory molecule that promotes osteogenic differentiation in murine MSCs. The promoting effect of WT and MT FGFR2 is mediated by ERK1/2 and PKCalpha pathways that play essential and distinct roles in FGFR2-induced osteogenic differentiation of mesenchymal cells.


Asunto(s)
Diferenciación Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Células Madre Mesenquimatosas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Osteoblastos/metabolismo , Proteína Quinasa C-alfa/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Acrocefalosindactilia/genética , Acrocefalosindactilia/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Sustitución de Aminoácidos , Animales , Calcificación Fisiológica/fisiología , Línea Celular , Proliferación Celular , Supervivencia Celular , Regulación de la Expresión Génica/fisiología , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Mutación Missense , Osteoblastos/citología , Fosforilación/fisiología , Proteína Quinasa C-alfa/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Cráneo/citología , Cráneo/metabolismo
13.
Am J Pathol ; 169(4): 1303-11, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17003487

RESUMEN

Genetic mutations of Twist, a basic helix-loop-helix transcription factor, induce premature fusion of cranial sutures in Saethre-Chotzen syndrome (SCS). We report here a previously undescribed mechanism involved in the altered osteoblastogenesis in SCS. Cranial osteoblasts from an SCS patient with a Twist mutation causing basic helix-loop-helix deletion exhibited decreased expression of E3 ubiquitin ligase Cbl compared with wild-type osteoblasts. This was associated with decreased ubiquitin-mediated degradation of phosphatidyl inositol 3 kinase (PI3K) and increased PI3K expression and PI3K/Akt signaling. Increased PI3K immunoreactivity was also found in osteoblasts in histological sections of affected cranial sutures from SCS patients. Transfection with Twist or Cbl abolished the increased PI3K/Akt signaling in Twist mutant osteoblasts. Forced overexpression of Cbl did not correct the altered expression of osteoblast differentiation markers in Twist mutant cells. In contrast, pharmacological inhibition of PI3K/Akt, but not ERK signaling, corrected the increased cell growth in Twist mutant osteoblasts. The results show that Twist haploinsufficiency results in decreased Cbl-mediated PI3K degradation in osteoblasts, causing PI3K accumulation and activation of PI3K/Akt-dependent osteoblast growth. This provides genetic and biochemical evidence for a role for Cbl-mediated PI3K signaling in the altered osteoblast phenotype induced by Twist haploinsufficiency in SCS.


Asunto(s)
Acrocefalosindactilia/enzimología , Proteínas Nucleares/deficiencia , Osteoblastos/citología , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteína 1 Relacionada con Twist/deficiencia , Acrocefalosindactilia/genética , Proliferación Celular , Suturas Craneales/enzimología , Regulación hacia Abajo , Humanos , Proteínas Nucleares/genética , Osteoblastos/enzimología , Fosfatidilinositol 3-Quinasas/análisis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/análisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Transducción de Señal , Transfección , Proteína 1 Relacionada con Twist/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...