Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 2(37): 6192-6197, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262137

RESUMEN

Here we prepare pH-responsive complex molecular hydrogels from oppositely charged tetrapeptidic components that can be pH-tuned resulting in interconversion between different networks. Two different systems are described based on tetrapeptides with an alternating sequence of non-polar (F) and polar (D or K) residues. Co-aggregated hydrogels are easily formed in situ at neutral pH whereas one-component networks are maintained after changing into acidic or basic pH. These systems have been applied for the pH selective release of two hydrophobic dyes - Methylene Blue and Bromothymol Blue - as drug models. Different release profiles have been observed depending on the characteristics of the network as well as the pH of the media. These materials offer great potential as multidrug carriers.

2.
Biomacromolecules ; 15(2): 591-8, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24369761

RESUMEN

We examine the self-assembly of a peptide A6H comprising a hexa-alanine sequence A6 with a histidine (H) "head group", which chelates Zn(2+) cations. We study the self-assembly of A6H and binding of Zn(2+) ions in ZnCl2 solutions, under acidic and neutral conditions. A6H self-assembles into nanotapes held together by a ß-sheet structure in acidic aqueous solutions. By dissolving A6H in acidic ZnCl2 solutions, the carbonyl oxygen atoms in A6H chelate the Zn(2+) ions and allow for ß-sheet formation at lower concentrations, consequently reducing the onset concentration for nanotape formation. A6H mixed with water or ZnCl2 solutions under neutral conditions produces short sheets or pseudocrystalline tapes, respectively. The imidazole ring of A6H chelates Zn(2+) ions in neutral solutions. The internal structure of nanosheets and pseudocrystalline sheets in neutral solutions is similar to the internal structure of A6H nanotapes in acidic solutions. Our results show that it is possible to induce dramatic changes in the self-assembly and chelation sites of A6H by changing the pH of the solution. However, it is likely that the amphiphilic nature of A6H determines the internal structure of the self-assembled aggregates independent from changes in chelation.


Asunto(s)
Quelantes/química , Péptidos/química , Tensoactivos/química , Zinc/química , Alanina/química , Histidina/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Péptidos/síntesis química , Propiedades de Superficie
3.
J Phys Chem B ; 114(2): 940-51, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20039666

RESUMEN

The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide Abeta16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations. The solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one being linear and twisted and the other twisted in two directions. These structures were used to simulate circular dichroism spectra. The roles of aromatic stacking interactions and charge transfer effects were also examined. Simulated spectra were found to be similar to those observed experimentally (in water or methanol) which show a maximum at 215 or 218 nm due to pi-pi* interactions, when allowance is made for a 15-18 nm red-shift that may be due to light scattering effects.


Asunto(s)
Péptidos beta-Amiloides/química , Metanol/química , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Simulación por Computador , Humanos , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína , Solubilidad , Termodinámica
4.
J Am Chem Soc ; 123(43): 10560-70, 2001 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-11673988

RESUMEN

The interaction with Cu2+ and dopamine of three polyazacyclophanes containing pyrazole fragments as spacers is described. Formation of mixed complexes Cu2+-macrocycle-dopamine has been studied by potentiometric methods in aqueous solution. The crystal structures of the complexes [Cu2(L1)(H2O)2](ClO4)4*2H2O (4) (L1 = 13,26-dibenzyl-3,6,9,12,13,16,19,22,25,26-decaazatricyclo[22.2.1.1(11,14)]octacosa-1(27),11,14(28),24-tetraene) and [Cu2(H-1L3)](HClO4)(ClO4)2*2H2O (6) (L3 = 1,4,7,8,11,14,17,20,21,24,29,32,33,36-tetradecaazapentacyclo[12.12.12.1(6,9).1(19,22).1(31,34)]hentetraconta-6,9(41),19(40),21,31,34(39)-hexaene) are presented. In the first one (4), each Cu2+ coordination site is made up by the three nitrogens of the polyamine bridge, a sp2 pyrazole nitrogen and one water molecule that occupies the axial position of a square pyramid. The distance between the copper ions is 6.788(2) A. In the crystal structure of 6, the coordination geometry around each Cu2+ is square pyramidal with its base being formed by two secondary nitrogens of the bridge and two nitrogen atoms of two different pyrazolate units which act as exobidentate ligands. The axial positions are occupied by the bridgehead nitrogen atoms; the elongation is more pronounced in one of the two sites [Cu(1)-N(1), 2.29(2) A; Cu(2)-N(6), 2.40(1) A]. The Cu-N distances involving the deprotonated pyrazole moieties are significantly shorter than those of the secondary nitrogens. The Cu(1)...Cu(2) distance is 3.960(3) A. The pyrazole in the noncoordinating bridge does not deprotonate and lies to one side of the macrocyclic cavity. One of the aliphatic nitrogens of this bridge is protonated and hydrogen bonded to a water molecule, which is further connected to the sp2 nitrogen of the pyrazole moiety through a hydrogen bond. The solution studies reveal a ready deprotonation of the pyrazole units induced by coordination to Cu2+. In the case of L2 (L2 = 3,6,9,12,13,16,19,22,25,26-decaazatricyclo[22.2.1.1(11,14)]octacosa-1(27),11,14(28),24-tetraene), deprotonation of both pyrazole subunits is already observed at pH ca. 4 for 2:1 Cu2+:L2 molar ratios. All three free receptors interact with dopamine in aqueous solution. L3 is a receptor particularly interesting with respect to the values of the interaction constants over five logarithmic units at neutral pH, which might suggest an encapsulation of dopamine in the macrocyclic cage. All three receptors form mixed complexes Cu2+-L-dopamine. The affinity for the formation of ternary dopamine complexes is particularly high in the case of the binuclear Cu2+ complexes of the 1-benzyl derivative L1.


Asunto(s)
Cobre/química , Dopamina/química , Compuestos Organometálicos/química , Poliaminas/química , Pirazoles/química , Cationes Bivalentes , Cristalografía por Rayos X , Electroquímica , Cinética , Modelos Moleculares , Estructura Molecular , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...