Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38496495

RESUMEN

The activation of branched chain amino acid (BCAA) catabolism has garnered interest as a potential therapeutic approach to improve insulin sensitivity, enhance recovery from heart failure, and blunt tumor growth. Evidence for this interest relies in part on BT2, a small molecule that promotes BCAA oxidation and is protective in mouse models of these pathologies. BT2 and other analogs allosterically inhibit branched chain ketoacid dehydrogenase kinase (BCKDK) to promote BCAA oxidation, which is presumed to underlie the salutary effects of BT2. Potential "off-target" effects of BT2 have not been considered, however. We therefore tested for metabolic off-target effects of BT2 in Bckdk-/- animals. As expected, BT2 failed to activate BCAA oxidation in these animals. Surprisingly, however, BT2 strongly reduced plasma tryptophan levels and promoted catabolism of tryptophan to kynurenine in both control and Bckdk-/- mice. Mechanistic studies revealed that none of the principal tryptophan catabolic or kynurenine-producing/consuming enzymes (TDO, IDO1, IDO2, or KATs) were required for BT2-mediated lowering of plasma tryptophan. Instead, using equilibrium dialysis assays and mice lacking albumin, we show that BT2 avidly binds plasma albumin and displaces tryptophan, releasing it for catabolism. These data confirm that BT2 activates BCAA oxidation via inhibition of BCKDK but also reveal a robust off-target effect on tryptophan metabolism via displacement from serum albumin. The data highlight a potential confounding effect for pharmaceutical compounds that compete for binding with albumin-bound tryptophan.

2.
Am J Physiol Endocrinol Metab ; 325(5): E624-E637, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792040

RESUMEN

Nonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis. In alignment with our hypothesis, female and male mice lacking GCN2 failed to adequately increase energy expenditure and veered into torpor. Mice administered a small molecule inhibitor of GCN2 were also profoundly intolerant to acute cold stress. Gcn2 deletion also impeded liver-derived FGF21 but in males only. Within the brown adipose tissue (BAT), acute cold exposure increased ISR activation and its transcriptional execution in males and females. RNA sequencing in BAT identified transcripts that encode actomyosin mechanics and transmembrane transport as requiring GCN2 during cold exposure. These transcripts included class II myosin heavy chain and amino acid transporters, critical for maximal thermogenesis during cold stress. Importantly, Gcn2 deletion corresponded with higher circulating amino acids and lower intracellular amino acids in the BAT during cold stress. In conclusion, we identify a sex-independent role for GCN2 activation to support adaptive thermogenesis via uptake of amino acids into brown adipose.NEW & NOTEWORTHY This paper details the discovery that GCN2 activation is required in both male and female mice to maintain core body temperature during acute cold exposure. The results point to a novel role for GCN2 in supporting adaptive thermogenesis via amino acid transport and actomyosin mechanics in brown adipose tissue.


Asunto(s)
Actomiosina , Temperatura Corporal , Ratones , Masculino , Femenino , Animales , Actomiosina/metabolismo , Termogénesis/genética , Hígado/metabolismo , Frío , Tejido Adiposo Pardo/metabolismo , Aminoácidos/metabolismo , Ratones Endogámicos C57BL
3.
Geroscience ; 45(4): 2425-2441, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36976488

RESUMEN

Dietary sulfur amino acid restriction (SAAR) protects against diet-induced obesity, extends healthspan, and coincides with an overall reduction in hepatic protein synthesis. To explore the underpinnings of SAAR-induced slowed growth and its impact on liver metabolism and proteostasis, we resolved changes in hepatic mRNA and protein abundances and compared synthesis rates of individual liver proteins. To achieve this, adult male mice were provided deuterium-labeled drinking water while freely consuming either a regular-fat or high-fat diet that was SAA restricted. Livers from these mice and their respective dietary controls were used to conduct transcriptomic, proteomic, and kinetic proteomic analyses. We found that remodeling of the transcriptome by SAAR was largely agnostic to dietary fat content. Shared signatures included activation of the integrated stress response alongside alterations in metabolic processes impacting lipids, fatty acids, and amino acids. Changes to the proteome correlated poorly with the transcriptome, and yet, functional clustering of kinetic proteomic changes in the liver during SAAR revealed that the management of fatty acids and amino acids were altered to support central metabolism and redox balance. Dietary SAAR also strongly influenced the synthesis rates of ribosomal proteins and ribosome-interacting proteins regardless of dietary fat. Taken together, dietary SAAR alters the transcriptome and proteome in the liver to safely manage increased fatty acid flux and energy use and couples this with targeted changes in the ribo-interactome to support proteostasis and slowed growth.


Asunto(s)
Aminoácidos Sulfúricos , Proteoma , Masculino , Ratones , Animales , Proteoma/genética , Proteoma/metabolismo , Proteómica , Aminoácidos Sulfúricos/metabolismo , Hígado/metabolismo , Aminoácidos , Grasas de la Dieta/metabolismo , Ácidos Grasos
4.
Elife ; 112022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107759

RESUMEN

A stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.


Prostate cancer is the fourth most common cancer worldwide, affecting over a million people each year. Existing drug treatments work by blocking the effects or reducing the levels of the hormone testosterone. However, these drug regimens are not always effective, so finding alternative treatments is an important area of research. One option is to target the 'integrated stress response', a pathway that acts as a genetic switch, turning on a group of genes that counteract cellular stress and are essential for the survival of cancer cells. The reason cancer cells are under stress is because they are hungry. They need to make a lot of proteins and other metabolic intermediates to grow and divide, which means they need plenty of amino acids, the building blocks that make up proteins and fuel metabolism. Amino acids enter cells through molecular gates called amino acid transporters, and scientists think the integrated stress response might play a role in this process. One of the integrated stress response components is a protein called General Control Nonderepressible 2, or GCN2 for short. In healthy cells, this protein helps to boost amino acid levels when supplies start to run low. Cordova et al. examined human prostate cancer cells to find out what role GCN2 plays in this cancer. In both lab-grown cells and tissue from patients, GCN2 was active and played a critical role in prostate tumor growth by turning on the genes for amino acid transporters to increase the levels of amino acids entering the cancer cells. Deleting the gene for GCN2, or blocking its effects with an experimental drug, slowed the growth of cultured prostate cancer cells and reduced tumor growth in mice. In these early experiments, Cordova et al. did not notice any toxic side effects to healthy tissues. If GCN2 works in the same way in humans as it does in mice, blocking it might help to control prostate cancer growth. The integrated stress response is also active in other cancer types, so the same logic might apply to different tumors. However, before GCN2 blockers can become treatments, researchers need a more complete understanding of their molecular effects.


Asunto(s)
Neoplasias de la Próstata , eIF-2 Quinasa , Animales , Humanos , Masculino , Ratones , Aminoácidos/metabolismo , Aminoácidos Esenciales , Andrógenos , eIF-2 Quinasa/metabolismo , Homeostasis , Ratones Endogámicos C57BL , Neoplasias de la Próstata/genética
5.
Front Aging ; 3: 975129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091469

RESUMEN

Dietary interventions such as sulfur amino acid restriction (SAAR) target multiple drivers of aging, and show promise for preventing or delaying the onset of chronic diseases. SAAR promotes metabolic health and longevity in laboratory animals. The effects of SAAR on proteostasis remain relatively unexplored. We previously reported that SAAR promotes mitochondrial proteostatic maintenance, despite suppression of global protein synthesis, in two peripheral tissues, the liver and skeletal muscle. However, the brain, a tissue vulnerable to age-related neurodegenerative diseases due to the loss of proteostasis, has not been thoroughly studied. Therefore, we sought to reveal proteostatic responses in the brains of mice fed SAAR for 35 days. Here, we demonstrate that male C57Bl/6J mice fed two levels of SAAR maintained rates of protein synthesis in all sub-cellular fractions of the pre-frontal cortex. In comparison, rates of skeletal muscle protein synthesis in SAAR fed mice were slower than control-fed mice. To gain mechanistic insight, we examined several key nutrient/energy sensitive signaling proteins: AMP-activated protein kinase (AMPK), eukaryotic initiation factor 2 (eIF2), and ribosomal protein S6 (rpS6). SAAR had minimal to modest effects on the total abundance and phosphorylation of these proteins in both tissues. Our results indicate that the pre-frontal cortex in brain is resistant to perturbations in protein synthesis in mice fed SAAR, unlike skeletal muscle, which had a reduction in global protein synthesis. The results from this study demonstrate that proteostatic control in brain is of higher priority than skeletal muscle during dietary SAAR.

6.
FASEB J ; 36(7): e22396, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35690926

RESUMEN

Dietary removal of an essential amino acid (EAA) triggers the integrated stress response (ISR) in liver. Herein, we explored the mechanisms that activate the ISR and execute changes in transcription and translation according to the missing EAA. Wild-type mice and mice lacking general control nonderepressible 2 (Gcn2) were fed an amino acid complete diet or a diet devoid of either leucine or sulfur amino acids (methionine and cysteine). Serum and liver leucine concentrations were significantly reduced within the first 6 h of feeding a diet lacking leucine, corresponding with modest, GCN2-dependent increases in Atf4 mRNA translation and induction of selected ISR target genes (Fgf21, Slc7a5, Slc7a11). In contrast, dietary removal of the sulfur amino acids lowered serum methionine, but not intracellular methionine, and yet hepatic mRNA abundance of Atf4, Fgf21, Slc7a5, Slc7a11 substantially increased regardless of GCN2 status. Liver tRNA charging levels did not correlate with intracellular EAA concentrations or GCN2 status and remained similar to mice fed a complete diet. Furthermore, loss of Gcn2 increased the occurrence of ribosome collisions in liver and derepressed mechanistic target of rapamycin complex 1 signal transduction, but these changes did not influence execution of the ISR. We conclude that ISR activation is directed by intracellular EAA concentrations, but ISR execution is not. Furthermore, a diet devoid of sulfur amino acids does not require GCN2 for the ISR to execute changes to the transcriptome.


Asunto(s)
Aminoácidos Sulfúricos , Aminoácidos , Aminoácidos/metabolismo , Aminoácidos Sulfúricos/metabolismo , Animales , Dieta , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Leucina , Hígado/metabolismo , Metionina/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética
7.
Nat Metab ; 4(1): 141-152, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35058631

RESUMEN

Homeostasis maintains serum metabolites within physiological ranges. For glucose, this requires insulin, which suppresses glucose production while accelerating its consumption. For other circulating metabolites, a comparable master regulator has yet to be discovered. Here we show that, in mice, many circulating metabolites are cleared via the tricarboxylic acid cycle (TCA) cycle in linear proportionality to their circulating concentration. Abundant circulating metabolites (essential amino acids, serine, alanine, citrate, 3-hydroxybutyrate) were administered intravenously in perturbative amounts and their fluxes were measured using isotope labelling. The increased circulating concentrations induced by the perturbative infusions hardly altered production fluxes while linearly enhancing consumption fluxes and TCA contributions. The same mass action relationship between concentration and consumption flux largely held across feeding, fasting and high- and low-protein diets, with amino acid homeostasis during fasting further supported by enhanced endogenous protein catabolism. Thus, despite the copious regulatory machinery in mammals, circulating metabolite homeostasis is achieved substantially through mass action-driven oxidation.


Asunto(s)
Biomarcadores/sangre , Homeostasis , Metaboloma , Algoritmos , Aminoácidos/metabolismo , Animales , Ciclo del Ácido Cítrico , Metabolismo Energético , Glucosa/metabolismo , Masculino , Metabolómica/métodos , Ratones , Ratones Noqueados , Modelos Biológicos , Oxidación-Reducción
8.
J Nutr ; 151(4): 785-799, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33512502

RESUMEN

BACKGROUND: Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE: We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS: Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS: We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS: Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Aminoácidos Sulfúricos/deficiencia , Factor de Transcripción Activador 4/deficiencia , Factor de Transcripción Activador 4/genética , Aminoácidos Sulfúricos/sangre , Aminoácidos Sulfúricos/metabolismo , Animales , Antioxidantes/metabolismo , Composición Corporal , ADN/biosíntesis , Dietoterapia , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Sulfuro de Hidrógeno/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas , Factores Sexuales , Estrés Fisiológico
9.
Front Physiol ; 11: 110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32132934

RESUMEN

The athletic horse, despite being over 50% muscle mass, remains understudied with regard to the effects of exercise and training on skeletal muscle metabolism. To begin to address this knowledge gap, we employed an untargeted metabolomics approach to characterize the exercise-induced and fitness-related changes in the skeletal muscle of eight unconditioned Standardbred horses (four male, four female) before and after a 12-week training period. Before training, unconditioned horses showed a high degree of individual variation in the skeletal muscle metabolome, resulting in very few differences basally and at 3 and 24 h after acute fatiguing exercise. Training did not alter body composition but did improve maximal aerobic and running capacities (p < 0.05), and significantly altered the skeletal muscle metabolome (p < 0.05, q < 0.1). While sex independently influenced body composition and distance run following training (p < 0.05), sex did not affect the skeletal muscle metabolome. Exercise-induced metabolomic alterations (p < 0.05, q < 0.1) largely centered on the branched-chain amino acids (BCAA), xenobiotics, and a variety of lipid and nucleotide-related metabolites, particularly in the conditioned state. Further, training increased (p < 0.05, q < 0.1) the relative abundance of almost every identified lipid species, and this was accompanied by increased plasma BCAAs (p < 0.0005), phenylalanine (p = 0.01), and tyrosine (p < 0.02). Acute exercise in the conditioned state decreased (p < 0.05, q < 0.1) the relative abundance of almost all lipid-related species in skeletal muscle by 24 h post-exercise, whereas plasma amino acids remained unaltered. These changes occurred alongside increased muscle gene expression (p < 0.05) related to lipid uptake (Cd36) and lipid (Cpt1b) and BCAA (Bckdk) utilization. This work suggests that metabolites related to amino acid, lipid, nucleotide and xenobiotic metabolism play pivotal roles in the response of equine skeletal muscle to vigorous exercise and training. Use of these and future data sets could be used to track the impact of training and fitness on equine health and may lead to novel predictors and/or diagnostic biomarkers.

10.
J Biol Chem ; 294(38): 13864-13875, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31413113

RESUMEN

Asparaginase is an amino acid-depleting agent used to treat blood cancers. Metabolic complications due to asparaginase affect liver function in humans. To examine how the liver response to asparaginase changes during maturity to adulthood, here we treated juvenile (2-week), young adult (8-week), and mature adult (16-week) mice with drug or excipient for 1 week and conducted RNA-Seq and functional analyses. Asparaginase reduced body growth and liver mass in juveniles but not in the adult animals. Unbiased exploration of the effect of asparaginase on the liver transcriptome revealed that the integrated stress response (ISR) was the only molecular signature shared across the ages, corroborating similar eukaryotic initiation factor 2 phosphorylation responses to asparaginase at all ages. Juvenile livers exhibited steatosis and iron accumulation following asparaginase exposure along with a hepatic gene signature indicating that asparaginase uniquely affects lipid, cholesterol, and iron metabolism in juvenile mice. In contrast, asparaginase-treated adult mice displayed greater variability in liver function, which correlated with an acute-phase inflammatory response gene signature. Asparaginase-exposed adults also had a serine/glycine/one-carbon metabolism gene signature in liver that corresponded with reduced circulating glycine and serine levels. These results establish the ISR as a conserved response to asparaginase-mediated amino acid deprivation and provide new insights into the relationship between the liver transcriptome and hepatic function upon asparaginase exposure.


Asunto(s)
Asparaginasa/efectos adversos , Asparaginasa/metabolismo , Hígado/metabolismo , Factores de Edad , Aminoácidos/metabolismo , Animales , Asparaginasa/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Hígado Graso/metabolismo , Femenino , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
11.
J Biol Chem ; 293(14): 5005-5015, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29449374

RESUMEN

Amino acid availability is sensed by GCN2 (general control nonderepressible 2) and mechanistic target of rapamycin complex 1 (mTORC1), but how these two sensors coordinate their respective signal transduction events remains mysterious. In this study we utilized mouse genetic models to investigate the role of GCN2 in hepatic mTORC1 regulation upon amino acid stress induced by a single injection of asparaginase. We found that deletion of Gcn2 prevented hepatic phosphorylation of eukaryotic initiation factor 2α to asparaginase and instead unleashed mTORC1 activity. This change in intracellular signaling occurred within minutes and resulted in increased 5'-terminal oligopyrimidine mRNA translation instead of activating transcription factor 4 synthesis. Asparaginase also promoted hepatic mRNA levels of several genes which function as mTORC1 inhibitors, and these genes were blunted or blocked in the absence of Gcn2, but their timing could not explain the early discordant effects in mTORC1 signaling. Preconditioning mice with a chemical endoplasmic reticulum stress agent before amino acid stress rescued normal mTORC1 repression in the liver of Gcn2-/- mice but not in livers with both Gcn2 and the endoplasmic reticulum stress kinase, Perk, deleted. Furthermore, treating wildtype and Gcn2-/- mice with ISRIB, an inhibitor of PERK signaling, also failed to alter hepatic mTORC1 responses to asparaginase, although administration of ISRIB alone had an inhibitory GCN2-independent effect on mTORC1 activity. Taken together, the data show that activating transcription factor 4 is not required, but eukaryotic initiation factor 2α phosphorylation is necessary to prevent mTORC1 activation during amino acid stress.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Aminoácidos/metabolismo , Animales , Femenino , Eliminación de Gen , Masculino , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
12.
Sci Rep ; 7(1): 1272, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28455513

RESUMEN

The anti-leukemic agent asparaginase activates the integrated stress response (ISR) kinase GCN2 and inhibits signaling via mechanistic target of rapamycin complex 1 (mTORC1). The study objective was to investigate the protective role of activating transcription factor 4 (ATF4) in controlling the hepatic transcriptome and mediating GCN2-mTORC1 signaling during asparaginase. We compared global gene expression patterns in livers from wildtype, Gcn2 -/-, and Atf4 -/- mice treated with asparaginase or excipient and further explored selected responses in livers from Atf4 +/- mice. Here, we show that ATF4 controls a hepatic gene expression profile that overlaps with GCN2 but is not required for downregulation of mTORC1 during asparaginase. Ingenuity pathway analysis indicates GCN2 independently influences inflammation-mediated hepatic processes whereas ATF4 uniquely associates with cholesterol metabolism and endoplasmic reticulum (ER) stress. Livers from Atf4 -/- or Atf4 +/- mice displayed an amplification of the amino acid response and ER stress response transcriptional signatures. In contrast, reduction in hepatic mTORC1 signaling was retained in Atf4 -/- mice treated with asparaginase. CONCLUSIONS: GCN2 and ATF4 serve complementary roles in the hepatic response to asparaginase. GCN2 functions to limit inflammation and mTORC1 signaling whereas ATF4 serves to limit the amino acid response and prevent ER stress during amino acid depletion by asparaginase.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Antineoplásicos/administración & dosificación , Asparaginasa/administración & dosificación , Factor de Transcripción Activador 4/genética , Animales , Antineoplásicos/metabolismo , Asparaginasa/metabolismo , Estrés del Retículo Endoplásmico , Perfilación de la Expresión Génica , Hígado/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
13.
J Nutr ; 147(6): 1031-1040, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28446632

RESUMEN

Background: The phosphorylation of eukaryotic initiation factor 2 (p-eIF2) during dietary amino acid insufficiency reduces protein synthesis and alters gene expression via the integrated stress response (ISR).Objective: We explored whether a Met-restricted (MR) diet activates the ISR to reduce body fat and regulate protein balance.Methods: Male and female mice aged 3-6 mo with either whole-body deletion of general control nonderepressible 2 (Gcn2) or liver-specific deletion of protein kinase R-like endoplasmic reticulum kinase (Perk) alongside wild-type or floxed control mice were fed an obesogenic diet sufficient in Met (0.86%) or an MR (0.12% Met) diet for ≤5 wk. Ala enrichment with deuterium was measured to calculate protein synthesis rates. The guanine nucleotide exchange factor activity of eIF2B was measured alongside p-eIF2 and hepatic mRNA expression levels at 2 d and 5 wk. Metabolic phenotyping was conducted at 4 wk, and body composition was measured throughout. Results were evaluated with the use of ANOVA (P < 0.05).Results: Feeding an MR diet for 2 d did not increase hepatic p-eIF2 or reduce eIF2B activity in wild-type or Gcn2-/- mice, yet many genes transcriptionally regulated by the ISR were altered in both strains in the same direction and amplitude. Feeding an MR diet for 5 wk increased p-eIF2 and reduced eIF2B activity in wild-type but not Gcn2-/- mice, yet ISR-regulated genes altered in both strains similarly. Furthermore, the MR diet reduced mixed and cytosolic but not mitochondrial protein synthesis in both the liver and skeletal muscle regardless of Gcn2 status. Despite the similarities between strains, the MR diet did not increase energy expenditure or reduce body fat in Gcn2-/- mice. Finally, feeding the MR diet to mice with Perk deleted in the liver increased hepatic p-eIF2 and altered body composition similar to floxed controls.Conclusions: Hepatic activation of the ISR resulting from an MR diet does not require p-eIF2. Gcn2 status influences body fat loss but not protein balance when Met is restricted.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta , Factor 2 Eucariótico de Iniciación/metabolismo , Hígado/metabolismo , Metionina/administración & dosificación , Biosíntesis de Proteínas , Estrés Fisiológico , Factor de Transcripción Activador 4/metabolismo , Animales , Composición Corporal , Retículo Endoplásmico , Femenino , Expresión Génica , Regulación de la Expresión Génica , Masculino , Enfermedades Metabólicas/metabolismo , Metionina/deficiencia , Metionina/farmacología , Ratones Endogámicos C57BL , Obesidad/metabolismo , Fosforilación , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , ARN Mensajero/metabolismo , eIF-2 Quinasa/metabolismo
14.
J Biol Chem ; 292(16): 6786-6798, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28242759

RESUMEN

Obesity increases risk for liver toxicity by the anti-leukemic agent asparaginase, but the mechanism is unknown. Asparaginase activates the integrated stress response (ISR) via sensing amino acid depletion by the eukaryotic initiation factor 2 (eIF2) kinase GCN2. The goal of this work was to discern the impact of obesity, alone versus alongside genetic disruption of the ISR, on mechanisms of liver protection during chronic asparaginase exposure in mice. Following diet-induced obesity, biochemical analysis of livers revealed that asparaginase provoked hepatic steatosis that coincided with activation of another eIF2 kinase PKR-like endoplasmic reticulum kinase (PERK), a major ISR transducer to ER stress. Genetic loss of Gcn2 intensified hepatic PERK activation to asparaginase, yet surprisingly, mRNA levels of key ISR gene targets such as Atf5 and Trib3 failed to increase. Instead, mechanistic target of rapamycin complex 1 (mTORC1) signal transduction was unleashed, and this coincided with liver dysfunction reflected by a failure to maintain hydrogen sulfide production or apolipoprotein B100 (ApoB100) expression. In contrast, obese mice lacking hepatic activating transcription factor 4 (Atf4) showed an exaggerated ISR and greater loss of endogenous hydrogen sulfide but normal inhibition of mTORC1 and maintenance of ApoB100 during asparaginase exposure. In both genetic mouse models, expression and phosphorylation of Sestrin2, an ATF4 gene target, was increased by asparaginase, suggesting mTORC1 inhibition during asparaginase exposure is not driven via eIF2-ATF4-Sestrin2. In conclusion, obesity promotes a maladaptive ISR during asparaginase exposure. GCN2 functions to repress mTORC1 activity and maintain ApoB100 protein levels independently of Atf4 expression, whereas hydrogen sulfide production is promoted via GCN2-ATF4 pathway.


Asunto(s)
Asparaginasa/metabolismo , Hígado Graso/metabolismo , Hígado/patología , Obesidad/metabolismo , Factor de Transcripción Activador 4/genética , Factores de Transcripción Activadores/metabolismo , Animales , Apolipoproteína B-100/metabolismo , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Hígado Graso/patología , Eliminación de Gen , Glutatión/química , Sulfuro de Hidrógeno/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Peroxidasas , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasas TOR/metabolismo , eIF-2 Quinasa/metabolismo
15.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1061-70, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26968207

RESUMEN

Treatment with the antileukemic agent asparaginase can induce acute pancreatitis, but the pathophysiology remains obscure. In the liver of mice, eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2) is essential for mitigating metabolic stress caused by asparaginase. We determined the consequences of asparaginase treatment on the pancreata of wild-type (WT, GCN2-intact) and GCN2-deleted (ΔGcn2) mice. Mean pancreas weights in ΔGcn2 mice treated with asparaginase for 8 days were increased (P < 0.05) above all other groups. Histological examination revealed acinar cell swelling and altered staining of zymogen granules in ΔGcn2, but not WT, mice. Oil Red O staining and measurement of pancreas triglycerides excluded lipid accumulation as a contributor to acini appearance. Instead, transmission electron microscopy revealed dilatation of the endoplasmic reticulum (ER) and accumulation of autophagic vacuoles in the pancreas of ΔGcn2 mice treated with asparaginase. Consistent with the idea that loss of GCN2 in a pancreas exposed to asparaginase induced ER stress, phosphorylation of protein kinase R-like ER kinase (PERK) and its substrate eIF2 was increased in the pancreas of asparaginase-treated ΔGcn2 mice. In addition, mRNA expression of PERK target genes, activating transcription factors 4, 3, and 6 (Atf4, Atf3, and Atf6), fibroblast growth factor 21 (Fgf21), heat shock 70-kDa protein 5 (Hspa5), and spliced Xbp1 (sXbp1), as well as pancreas mass, was elevated in the pancreas of asparaginase-treated ΔGcn2 mice. Furthermore, genetic markers of oxidative stress [sirtuin (Sirt1)], inflammation [tumor necrosis factor-α (Tnfα)], and pancreatic injury [pancreatitis-associated protein (Pap)] were elevated in asparaginase-treated ΔGcn2, but not WT, mice. These data indicate that loss of GCN2 predisposes the exocrine pancreas to a maladaptive ER stress response and autophagy during asparaginase treatment and represent a genetic basis for development of asparaginase-associated pancreatitis.


Asunto(s)
Eliminación de Gen , Pancreatitis/genética , Proteínas Serina-Treonina Quinasas/genética , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Animales , Asparaginasa/toxicidad , Autofagia , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/citología , Páncreas/metabolismo , Pancreatitis/etiología , Pancreatitis/metabolismo , Proteínas Asociadas a Pancreatitis , Proteínas Serina-Treonina Quinasas/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , eIF-2 Quinasa/metabolismo
16.
Mol Biol Cell ; 27(9): 1536-51, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26960794

RESUMEN

Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins-PERK (PEK/EIF2AK3), IRE1, and ATF6-is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Animales , Línea Celular , Colesterol/genética , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Expresión Génica/genética , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Biosíntesis de Proteínas , Pliegue de Proteína , Proteínas/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Transcripción Genética , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/metabolismo
17.
Appl Physiol Nutr Metab ; 40(12): 1324-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26584207

RESUMEN

Phytoecdysteroids such as 20-hydroxyecdysone (20HE) are nutritional supplements marketed as enhancers of lean body mass. In this study the impact of 20HE ingestion on protein kinase B/Akt-mechanistic target of rapamycin complex 1 signaling in the skeletal muscle and liver of male rats was found to be limited. Bioavailability of 20HE, whether consumed alone or with leucine, also remained low at all doses ingested. Additional work is necessary to clarify 20HE mechanism of action in vivo.


Asunto(s)
Suplementos Dietéticos , Ecdisterona/farmacología , Hígado/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Músculo Esquelético/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Disponibilidad Biológica , Relación Dosis-Respuesta a Droga , Ecdisterona/farmacocinética , Leucina/farmacología , Hígado/enzimología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Músculo Esquelético/enzimología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
18.
Am J Physiol Endocrinol Metab ; 308(4): E283-93, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25491724

RESUMEN

The antileukemic agent asparaginase triggers the amino acid response (AAR) in the liver by activating the eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2). To explore the mechanism by which AAR induction is necessary to mitigate hepatic lipid accumulation and prevent liver dysfunction during continued asparaginase treatment, wild-type and Gcn2 null mice were injected once daily with asparaginase or phosphate buffered saline for up to 14 days. Asparaginase induced mRNA expression of multiple AAR genes and greatly increased circulating concentrations of the metabolic hormone fibroblast growth factor 21 (FGF21) independent of food intake. Loss of Gcn2 precluded mRNA expression and circulating levels of FGF21 and blocked mRNA expression of multiple genes regulating lipid synthesis and metabolism including Fas, Ppara, Pparg, Acadm, and Scd1 in both liver and white adipose tissue. Furthermore, rates of triglyceride export and protein expression of apolipoproteinB-100 were significantly reduced in the livers of Gcn2 null mice treated with asparaginase, providing a mechanistic basis for the increase in hepatic lipid content. Loss of AAR-regulated antioxidant defenses in Gcn2 null livers was signified by reduced Gpx1 gene expression alongside increased lipid peroxidation. Substantial reductions in antithrombin III hepatic expression and activity in the blood of asparaginase-treated Gcn2 null mice indicated liver dysfunction. These results suggest that the ability of the liver to adapt to prolonged asparaginase treatment is influenced by GCN2-directed regulation of FGF21 and oxidative defenses, which, when lost, corresponds with maladaptive effects on lipid metabolism and hemostasis.


Asunto(s)
Antineoplásicos/efectos adversos , Asparaginasa/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Factores de Crecimiento de Fibroblastos/agonistas , Hígado/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Triglicéridos/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Antineoplásicos/administración & dosificación , Asparaginasa/administración & dosificación , Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Proteínas de Escherichia coli/administración & dosificación , Proteínas de Escherichia coli/efectos adversos , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Inyecciones Intraperitoneales , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo
19.
Cancer Cell ; 25(6): 735-47, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24856585

RESUMEN

Sonic hedgehog (Shh), a soluble ligand overexpressed by neoplastic cells in pancreatic ductal adenocarcinoma (PDAC), drives formation of a fibroblast-rich desmoplastic stroma. To better understand its role in malignant progression, we deleted Shh in a well-defined mouse model of PDAC. As predicted, Shh-deficient tumors had reduced stromal content. Surprisingly, such tumors were more aggressive and exhibited undifferentiated histology, increased vascularity, and heightened proliferation--features that were fully recapitulated in control mice treated with a Smoothened inhibitor. Furthermore, administration of VEGFR blocking antibody selectively improved survival of Shh-deficient tumors, indicating that Hedgehog-driven stroma suppresses tumor growth in part by restraining tumor angiogenesis. Together, these data demonstrate that some components of the tumor stroma can act to restrain tumor growth.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Células del Estroma/patología , Animales , Anticuerpos Monoclonales/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Inmunoglobulina G/farmacología , Ratones , Ratones Transgénicos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Distribución Aleatoria , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Transducción de Señal , Células del Estroma/metabolismo
20.
Cell ; 148(1-2): 349-61, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265420

RESUMEN

Metastasis is the leading cause of cancer-associated death but has been difficult to study because it involves a series of rare, stochastic events. To capture these events, we developed a sensitive method to tag and track pancreatic epithelial cells in a mouse model of pancreatic cancer. Tagged cells invaded and entered the bloodstream unexpectedly early, before frank malignancy could be detected by rigorous histologic analysis; this behavior was widely associated with epithelial-to-mesenchymal transition (EMT). Circulating pancreatic cells maintained a mesenchymal phenotype, exhibited stem cell properties, and seeded the liver. EMT and invasiveness were most abundant at inflammatory foci, and induction of pancreatitis increased the number of circulating pancreatic cells. Conversely, treatment with the immunosuppressive agent dexamethasone abolished dissemination. These results provide insight into the earliest events of cellular invasion in situ and suggest that inflammation enhances cancer progression in part by facilitating EMT and entry into the circulation.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Transición Epitelial-Mesenquimal , Invasividad Neoplásica , Neoplasias Pancreáticas/patología , Animales , Carcinoma Ductal Pancreático/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/inmunología , Pancreatitis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...