Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 40(22): 12268-12276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34427178

RESUMEN

Alzheimer's disease is a neurodegenerative disease caused by the deposition and accumulation of amyloid-ß (Aß) peptides in the brain neurons. Current medications are not a definitive cure for this disease, but they can hamper the signs and symptoms of Alzheimer's disease. Therefore, prevention is the best way to deal with this disease. In this study, the novel structures based on MBenes (such as Cd2B, Mo2B, Cu2B, and Ta2B) are proposed to prevent amyloid-ß accumulation in Alzheimer's disease. Regarding the remarkable MBene properties such as tunability, biocompatibility, and low manufacturing cost, the effect of these structures on amyloid-ß deformation was explored using molecular dynamics simulation. To provide an atomic analysis of Beta-amyloid behavior in the presence of these structures, the compaction, contact area, and stability of Beta-amyloid were investigated. The results indicated the satisfactory performance of MBenes on the destabilization of amyloid-ß structures. Moreover, given the higher interactions between Cd2B and amyloid-ß, the instability, compaction, and the contact area of amyloid-ß particles were investigated in this complex. The findings confirmed Cd2B as the best structure to prevent amyloid-ß accumulation. The results of this investigation paved the way for the development of these structures as a medicinal agent to prevent Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Cadmio , Péptidos beta-Amiloides/química , Amiloide
2.
J Biomol Struct Dyn ; 40(21): 11460-11466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34328374

RESUMEN

Herein, based on the paramount importance of combating emerging diseases, through employing a detailed in-silico study, the possibility of using MXenes in suppressing the coronavirus infection was elucidated. To this end, first, interactions of MXene nanosheets (Mn2C, Ti2C, and Mo2C) and spike protein (SP), the main infecting portion of the COVID-19, were investigated. It was found that the modeled MXenes were effective in attracting the SP, so that they can be exploited in filtering the coronavirus. In addition, the effect of the MXenes on the SP structure was assessed which demonstrated that the secondary structure of the SP could be changed. Therefore, the post-interactions of the SP/ACE2 (receptor of coronavirus in the body) could be interrupted, declaring the lower chance of coronavirus infecting. The in-silico studies revealed that the MXenes not only can be used to adsorb and hinder the distribution of the coronavirus but also affect the SP structure and the SP/ACE2 interactions to interrupt the COVID-19 threat. Therefore, MXenes can be exploited with simultaneous roles in physical inhibition and reactive weakening of the COVID-19. In this regard, the Mn2C nanosheet was well suited, which is suggested as a promising candidate to combat the coronavirus.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo
3.
J Mater Sci Mater Med ; 32(5): 49, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33891249

RESUMEN

Urea is the result of the breakdown of proteins in the liver, the excess of which circulates in the blood and is adsorbed by the kidneys. However, in the case of kidney diseases, some products, specifically urea, cannot be removed from the blood by the kidneys and causes serious health problems. The end-stage renal disease (ESRD) patients are not able to purify their blood, which endangers their life. ESRD patients require dialysis, a costly and difficult method of urea removal from the blood. Wearable artificial kidneys (WAKs) are consequently designed to remove the waste from blood. Regarding the great amount of daily urea production in the body, WAKs should contain strong and selective urea adsorbents. Fullerenes-which possess fascinating chemical properties-have been considered herein to develop novel urea removal adsorbents. Molecular dynamics (MD) has enabled researchers to study the interaction of different materials and can pave the way toward facilitating the development of wearable devices. In this study, urea adsorption by N-doped fullerenes and P-doped fullerenes were assessed through MD simulations. The urea adsorption was simulated by five samples of fullerenes, with phosphorous and different nitrogen dopant contents. For comparing the urea adsorption capacity in the performed simulations, detailed characteristics-including the energy analysis, radius of gyration, radial distribution function (RDF), root-mean-square fluctuation (RMSD), and H-bond analyses were investigated. It had been determined that the fullerene containing 8% nitrogen-with the highest reduction in the radius of gyration, the maximum RDF, a high adsorption energy, and a high number of hydrogen bonds-adsorbs urea more efficiently.


Asunto(s)
Fulerenos/química , Riñones Artificiales , Nitrógeno/química , Fósforo/química , Urea/química , Dispositivos Electrónicos Vestibles , Adsorción , Materiales Biocompatibles , Humanos , Ensayo de Materiales , Diálisis Renal
4.
ACS Omega ; 6(9): 6312-6325, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33718722

RESUMEN

Materials science can pave the way toward developing novel devices at the service of human life. In recent years, computational materials engineering has been promising in predicting material performance prior to the experiments. Herein, this capability has been carefully employed to tackle severe problems associated with kidney diseases through proposing novel nanolayers to adsorb urea and accordingly causing the wearable artificial kidney (WAK) to be viable. The two-dimensional metal carbide and nitride (MXene) nanosheets can leverage the performance of various devices since they are highly tunable along with fascinating surface chemistry properties. In this study, molecular dynamics (MD) simulations were exploited to investigate the interactions between urea and different MXene nanosheets. To this end, detailed analyses were performed that clarify the suitability of these nanostructures in urea adsorption. The atomistic simulations were carried out on Mn2C, Cd2C, Cu2C, Ti2C, W2C, Ta2C, and urea to determine the most appropriate urea-removing adsorbent. It was found that Cd2C was more efficient followed by Mn2C, which can be effectively exploited in WAK devices at the service of human health.

5.
ACS Appl Bio Mater ; 4(8): 6073-6083, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35006874

RESUMEN

Carbon nanoparticles are becoming promising agents in treating Parkinson's disease (PD) by preventing the folding and aggregation of α-synuclein, i.e., amyloid formation. Herein, for the first time, highly tunable graphene and carbon nanotubes (CNTs) have been doped using biocompatible silicon atoms for preventing Parkinson's disease. In this study, the conformational changes induced by these nanoparticles, the compactness of nanoparticles, the number of hydrogen bonds, the stability of α-synuclein in the presence of nanoparticles, and the interaction energies between α-synuclein and nanoparticles were investigated using microsecond coarse-grained and all-molecular-atom simulations. Although the nanoparticles considered in this study could induce desirable changes in α-synuclein conformations, Si-graphene (silicon-doped graphene) demonstrated the best performance. Si-graphene showed the highest interaction energy with α-synuclein compared to other nanoparticles, induced the most hydrogen bonds, was the least compact, and showed the most unstable α-synuclein conformation, resulting in the highest capability to prevent the folding and aggregation of α-synuclein. Our results displayed that 2D hexagonal structures, such as graphene and Si-graphene, possess better performance than tubular structures in inducing conformational changes in the α-synuclein protein. Furthermore, it was observed that the doping of silicon in graphene and CNT results in better folding and aggregation of α-synuclein prevention. This molecular investigation offers a nanostructure method in PD treatment.


Asunto(s)
Grafito , Nanotubos de Carbono , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Silicio/farmacología , alfa-Sinucleína/química
6.
Int J Nanomedicine ; 15: 6887-6903, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982240

RESUMEN

INTRODUCTION: The study of abnormal aggregation of proteins in different tissues of the body has recently earned great attention from researchers in various fields of science. Concerning neurological diseases, for instance, the accumulation of amyloid fibrils can contribute to Parkinson's disease, a progressively severe neurodegenerative disorder. The most prominent features of this disease are the degeneration of neurons in the substantia nigra and accumulation of α-synuclein aggregates, especially in the brainstem, spinal cord, and cortical areas. Dopamine replacement therapies and other medications have reduced motor impairment and had positive consequences on patients' quality of life. However, if these medications are stopped, symptoms of the disease will recur even more severely. Therefore, the improvement of therapies targeting more basic mechanisms like prevention of amyloid formation seems to be critical. It has been shown that the interactions between monolayers like graphene and amyloids could prevent their fibrillation. METHODS: For the first time, the impact of four types of last-generation graphene-based nanostructures on the prevention of α-synuclein amyloid fibrillation was investigated in this study by using molecular dynamics simulation tools. RESULTS: Although all monolayers were shown to prevent amyloid fibrillation, nitrogen-doped graphene (N-Graphene) caused the most instability in the secondary structure of α-synuclein amyloids. Moreover, among the four monolayers, N-Graphene was shown to present the highest absolute value of interaction energy, the lowest contact level of amyloid particles, the highest number of hydrogen bonds between water and amyloid molecules, the highest instability caused in α-synuclein particles, and the most significant decrease in the compactness of α-synuclein protein. DISCUSSION: Ultimately, it was concluded that N-Graphene could be the most effective monolayer to disrupt amyloid fibrillation, and consequently, prevent the progression of Parkinson's disease.


Asunto(s)
Grafito/uso terapéutico , Nanopartículas/uso terapéutico , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/química , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Glicerol/química , Glicerol/metabolismo , Grafito/química , Humanos , Simulación de Dinámica Molecular , Nanopartículas/química , Enfermedad de Parkinson/tratamiento farmacológico , Polímeros/química , Polímeros/metabolismo , Estructura Secundaria de Proteína , alfa-Sinucleína/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...