Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894809

RESUMEN

miRNAs represent ubiquitous regulators of gene expression and play an important and pivotal regulatory role in viral disease pathogenesis and virus-host interactions. Although previous studies have provided basic data for understanding the role of miRNAs in the molecular mechanisms of viral infection in birds, the role of miRNAs in the regulation of host responses to chicken astrovirus (CAstV) infection in chickens is not yet understood. In our study, we applied next-generation sequencing to profile miRNA expression in CAstV-infected chickens and to decipher miRNA-targeted specific signaling pathways engaged in potentially vital virus-infection biological processes. Among the 1354 detected miRNAs, we identified 58 mature miRNAs that were significantly differentially expressed in infected birds. Target prediction resulted in 4741 target genes. GO and KEGG pathway enrichment analyses showed that the target genes were mainly involved in the regulation of cellular processes and immune responses.


Asunto(s)
Avastrovirus , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Pollos/metabolismo , Avastrovirus/genética , Avastrovirus/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Microbiota-Huesped
2.
Viruses ; 14(6)2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35746747

RESUMEN

Bovine viral diarrhea virus (BVDV) belongs to the Flaviviridae family and the Pestivirus genus. Infection with BVDV causes a disease with a wide spectrum of clinical symptoms, most often mild, although infections with this virus constitute a serious economic problem all over the world. The virus is characterized by a high genetic variability, while the accumulation of single mutations leads to the formation of its new variants. The aim of this study was to better understand the complicated pathogenesis of this disease at the molecular level via the analysis of the transcriptome of cells infected with this virus. The bovine kidney cell line (MDBK), the cytopathic (cp) reference strain, and two non-cytopathic (ncp) BVD virus field strains were used in transcriptomic studies. The cell transcriptome was tested 24 and 72 h after infection. The results of the microarray analysis revealed changes in the expression levels of numerous genes. Genes with changed expression as a result of infection with the cp strain caused changes in the expression levels of a large number of genes and enriched a number of pathways. Genes with increased expression levels were enriched among other pathways involved in the cell cycle, while genes with reduced expression levels enriched pathways mostly related to metabolism. Genes with increased expression levels as a result of infection with ncp strains enriched a much smaller number of pathways, among them, pathways related to signaling activity 24 h post-infection and serine biosynthetic pathways both 24 and 72 h post-infection. Pathways enriched by genes with reduced expression levels were related to the innate immune response (72 h post-infection) or metabolism (24 and 72 h post-infection). The results of microarray studies can help us to better understand the host's response to BVDV infection.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina , Efecto Citopatogénico Viral , Diarrea , Virus de la Diarrea Viral Bovina Tipo 1/genética , Virus de la Diarrea Viral Bovina/genética , Humanos , Transcriptoma
3.
Front Vet Sci ; 8: 688911, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34268349

RESUMEN

Vaccination against bovine viral diarrhea (BVD) is one of the key elements to protect cattle herds from this economically important disorder. Bovine viral diarrhea virus (BVDV) is a pestivirus infecting animals at all ages with significant impact on reproductive, digestive, and respiratory systems. Financial burden caused by this pathogen prompts many farmers to introduce vaccination as the control and prophylactic measure especially when persistently infected (PI) individuals, being the main source of the virus in the herd, are removed after test-and-cull approach. The aim of the study was to compare the serological response in cattle herds where new PI calves were identified without prior removal of PI animals or despite their removal and after the introduction of whole herd vaccination against BVDV infection. Overall seroprevalence in 5 vaccinated herds was 91.7 and 83.3% using ELISA and virus neutralization test, respectively. Despite high titers for both vaccine and field strains of BVDV in analyzed herds the analysis of comparative strength of neutralization indicated that 41.4% of positive samples did not have a predominant titer against one specific subtype of BVDV. In 3 herds BVDV-1b subtype was identified while in 2 others it was BVDV-1d, while the vaccine used was based on BVDV-1a which was never identified in Poland so far. To increase the success of the BVDV eradication program, a careful approach is suggested when planning herd vaccination. Comparison of existing field strains and their similarity with vaccine strains at antigenic and genetic levels can be a useful approach to increase the effectiveness of vaccination and efficient protection of fetuses from persistent infection.

4.
Vaccines (Basel) ; 9(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804010

RESUMEN

(1) Background: The objective of the study was to evaluate the long-term antibody response of dairy cows to a single dose of a commercial modified-live virus (MLV) vaccine against bovine viral diarrhea (Mucosiffa® CEVA Sante Animale, Liburne, France). (2) Methods: The study was carried out in a dairy cattle herd counting 290 animals negative for bovine viral diarrhoea virus (BVDV). The vaccination was implemented following the manufacturer's instructions. Twelve dairy cows were randomly selected before the study, and blood samples were collected right before the vaccination and then 12 times at 1-month intervals. The serum samples were screened using a virus neutralization test (VNT) and ELISA. (3) Results: Both tests showed that antibody titers increased significantly in all animals within the first month post-vaccination, and continued to increase significantly until the second (VNT) and third (ELISA) month post-vaccination. Antibody titers remained high and stable until the end of the study. Moreover, cows did not show any adverse reactions or clinical symptoms of the disease. (4) Conclusion: The results of this study indicated that the administration of one dose MLV vaccine was able to stimulate long-lasting (12-months) and strong antibody response in all vaccinated cows.

5.
Virus Genes ; 56(4): 515-521, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32300930

RESUMEN

Bovine viral diarrhea virus (BVDV) belongs to the Pestivirus genus of the Flaviviridae family and has worldwide distribution, being one of the main causes of economic losses in cattle raising. The genome of pestiviruses is a single strand of positive-sense RNA with a length of 12.3 kb, which encodes one open reading frame flanked by untranslated regions. E2 glycoprotein is required for binding to cell-surface receptors and it also contains major antigenic determinants. The nucleotide sequence coding E2 is the most variable part of the viral genome. The heterogeneity that exists among circulating strains causes problems in the development of effective vaccines and reliable diagnostics. In this study, and for the first time analysis was made of the E2 glycoprotein coding sequences of 14 Polish BVDV-1 strains which belong to four subtypes: 1b (n = 7), 1f (n = 3), 1s (n = 3), and 1r (n = 1). These sequences showed evidence of strong purifying (negative) selection. However, we also identified positively selected sites. The availability of E2 sequences of Polish BVDV strains for reference, knowledge gained through epitope prediction attempts, and information on protein glycosylation sites can afford a better understanding of host-pathogen interactions.


Asunto(s)
Diarrea Mucosa Bovina Viral/virología , Virus de la Diarrea Viral Bovina Tipo 1/genética , Animales , Bovinos , Virus de la Diarrea Viral Bovina Tipo 1/patogenicidad , Genoma Viral/genética , Genotipo , Sistemas de Lectura Abierta/genética , Filogenia , Polonia
6.
BMC Vet Res ; 15(1): 278, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31382966

RESUMEN

BACKGROUND: Bovine viral diarrhea virus (BVDV) causes severe economic losses and is one of the most important viral pathogens of ruminants worldwide. The infection manifests itself in a variety of clinical symptoms. Phylogenetic studies based mainly on 5'UTR of its genome, identified many different subtypes of BVDV. Previous study indicated the predominance of BVDV-1b and BVDV-1d in Poland. The aim of this study was to genotype BVDV isolates currently circulating in Polish dairy herds. RESULTS: BVDV was detected in 30 herds. Viral subtypes were identified using sequences of the 5'UTR fragment and they were confirmed within a fragment of the Npro region. Seven subtypes of BVDV-1 species have been identified: 1b, 1 g, 1f, 1d, 1r, 1 s and 1e. CONCLUSION: The number of subtypes of BVDV in Poland evolves and 2 new subtypes have been identified for the first time. Such studies may have a positive impact on successful eradication of the virus using effective vaccines and diagnostic tests.


Asunto(s)
Diarrea Mucosa Bovina Viral/virología , Variación Genética , Animales , Diarrea Mucosa Bovina Viral/epidemiología , Bovinos , Virus de la Diarrea Viral Bovina Tipo 1/genética , Genotipo , Filogenia , Polonia
7.
J Appl Genet ; 53(3): 337-42, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22723200

RESUMEN

Polymorphisms in the coding region of the prion protein gene (PRNP) have been associated with the susceptibility and incubation period of prion diseases in humans and sheep. However, polymorphisms in this part of the bovine PRNP gene do not affect the classical bovine spongiform encephalopathy (BSE) susceptibility in cattle. Studies carried out in Germany have shown that insertion/deletion-type polymorphisms located in the promoter region of the bovine prion gene are possible genetic factors modulating BSE susceptibility by changing the level of PRNP expression. No such association was observed for atypical BSE cases; however, due to the rare nature of the disease, these results should be confirmed. Additionally, a single nonsynonymous mutation in PRNP codon 211 (E211K) was described in one H-type BSE case in the USA; however, it was not found in any other cases. Here, we performed genetic characterization of PRNP promoter indel variations and determined the polymorphism of open reading frames (ORFs) of PRNP and bovine prion-like Shadoo (SPRN) genes in six Polish atypical BSE cases and compared these results to the population of clinically healthy Polish Holstein cattle. No potentially pathogenic mutations were found in the PRNP ORF in atypical BSE-affected cattle, but our study showed a high frequency of deletions at the indel loci of PRNP promoter in these animals. Additionally, a rare sequence variation in the SPRN protein-coding sequence was found in one L-type atypical BSE-affected animal.


Asunto(s)
Encefalopatía Espongiforme Bovina/diagnóstico , Encefalopatía Espongiforme Bovina/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Polimorfismo Genético , Priones/genética , Alelos , Secuencia de Aminoácidos , Animales , Bovinos , Frecuencia de los Genes/genética , Interacciones Hidrofóbicas e Hidrofílicas , Mutación INDEL/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Sistemas de Lectura Abierta/genética , Polonia , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA