Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 50: 109465, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37600596

RESUMEN

The data described support the research article entitled "Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems". Data were collected during the corn (Zea mays L.) phase from rotations with four different cover crop (CC) treatments. The study was conducted at the USDA research facility in Beltsville, MD from 2017 through 2020. The data are available from a repository at Ag Data Commons. Descriptions of crop rotations, soil water and temperature sensors, placement, and frequency of measurements are provided in the manuscript and repository. Hourly volumetric soil water content (m3 m-3) (VWC) and soil temperature (°C) data for each soil depth (0-12, 25-35, 50-60, 75-85 cm) are available from the repository. In the manuscript, daily values of soil water storage were used to estimate daily evapotranspiration (ET) and infiltration. A text file of meta information is provided in the repository describing data collection procedures, estimation of ET and infiltration, and methods used to replace sensor data having errors. Daily precipitation, maximum and minimum temperatures, net solar radiation, and windspeed collected at a nearby weather station are provided for estimating growing degree days and potential ET. Cover crop biomass (kg ha-1) prior to corn planting and corn yields are provided by replication and cover crop system treatment for the four years.

2.
PLoS One ; 18(7): e0289352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498919

RESUMEN

As plant litter decomposes, its mass exponentially decreases until it reaches a non-zero asymptote. However, decomposition rates vary considerably among litter types as a function of their overall quality (i.e., carbon:nitrogen (C:N) ratio and litter chemistry). We investigated the effects of hairy vetch (HV: Vicia villosa Roth):cereal rye (RYE: Secale cereale L.) biomass proportions with or without broadcasted poultry manure on overall litter quality before and during decomposition. As HV biomass proportions increased from 0 to 100%, the relative susceptibility of HV:RYE mixtures to microbial decomposition increased due to: (i) decrease in the initial C:N ratio (87:1 to 10:1 in 2012 and 67:1 to 9:1 in 2013), (ii) increase in the non-structural labile carbohydrates (33 to 61% across years), and (iii) decrease in the structural holo-cellulose (59 to 33% across years) and lignin (8 to 6% across years) fractions. Broadcasted poultry manure decreased the overall initial quality of HV-dominated litters and increased the overall initial quality of RYE-dominated litters. Across all HV:RYE biomass proportions with or without poultry manure, chemical changes during litter decay were related to proportional mass loss. Therefore, the relative decrease in carbohydrates and the concomitant increase in holo-cellulose and lignin fractions were more pronounced for fast decomposing litter types, i.e., litters dominated by HV rather than RYE. While our results suggest possible convergence of litter C:N ratios, initial differences in litter chemistry neither converged nor diverged. Therefore, we conclude that the initial chemistry of litter before decomposition exerts a strong control on its chemical composition throughout the decay continuum.


Asunto(s)
Lignina , Vicia , Lignina/análisis , Estiércol/análisis , Biomasa , Nitrógeno/análisis , Carbono/análisis , Celulosa/análisis , Grano Comestible/química , Suelo , Hojas de la Planta/química
3.
PLoS One ; 18(4): e0284529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079528

RESUMEN

Efficient termination of cover crops is an important component of cover crop management. Information on termination efficiency can help in devising management plans but estimating herbicide efficacy is a tedious task and potential remote sensing technologies and vegetative indices (VIs) have not been explored for this purpose. This study was designed to evaluate potential herbicide options for the termination of wheat (Triticum aestivum L.), cereal rye (Secale cereale L.), hairy vetch (Vicia villosa Roth.), and rapeseed (Brassica napus L.), and to correlate different VIs with visible termination efficiency. Nine herbicides and one roller-crimping treatment were applied to each cover crop. Among different herbicides used, glyphosate, glyphosate + glufosinate, paraquat, and paraquat + metribuzin provided more than 95% termination for both wheat and cereal rye 28 days after treatment (DAT). For hairy vetch, 2,4-D + glufosinate and glyphosate + glufosinate, resulted in 99 and 98% termination efficiency, respectively, followed by 2,4-D + glyphosate and paraquat with 92% termination efficiency 28 DAT. No herbicide provided more than 90% termination of rapeseed and highest control was provided by paraquat (86%), 2,4-D + glufosinate (85%), and 2,4-D + glyphosate (85%). Roller-crimping (without herbicide application) did not provide effective termination of any cover crop with 41, 61, 49, and 43% termination for wheat, cereal rye, hairy vetch, and rapeseed, respectively. Among the VIs, Green Leaf Index had the highest Pearson correlation coefficient for wheat (r = -0.786, p = <0.0001) and cereal rye (r = -0.804, p = <0.0001) with visible termination efficiency rating. Whereas for rapeseed, the Normalized Difference Vegetation Index (NDVI) had the highest correlation coefficient (r = -0.655, p = <0.0001). The study highlighted the need for tankmixing 2,4-D or glufosinate with glyphosate for termination instead of blanket application of glyphosate alone for all crops including rapeseed and other broadleaf cover crops.


Asunto(s)
Herbicidas , Vicia , Agricultura/métodos , Tecnología de Sensores Remotos , Paraquat , Herbicidas/análisis , Productos Agrícolas , Grano Comestible/química , Ácido 2,4-Diclorofenoxiacético
4.
Ecol Appl ; 32(1): e02484, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34674351

RESUMEN

Cover crop mixtures have the potential to provide more ecosystem services than cover crop monocultures. However, seeding rates that are typically recommended (i.e. seeding rate of monoculture divided by the number of species in the mixture) are non-optimized and often result in the competitive species dominating the mixture, and therefore limiting the amount of ecosystem services that are provided. We created an analytical framework for selecting seeding rates for cover crop mixtures that maximize multifunctionality while minimizing seed costs. The framework was developed using data from a field experiment, which included six response surface designs of two-species mixtures, as well as a factorial replacement design of three-species and four-species mixtures. We quantified intraspecific and interspecific competition among two grasses and two legume cover crop species with grass and legume representing two functional groups: pearl millet [Pennisetum glaucum (L.) R.Br.], sorghum sudangrass [Sorghum bicolor (L.) Moench × Sorghum sudanense (Piper) Stapf], sunn hemp (Crotalaria juncea L.), and cowpea [Vigna unguiculata (L.) Walp]. Yield-density models were fit to estimate intraspecific and interspecific competition coefficients for each species in biculture. The hierarchy from most to least competitive was sorghum sudangrass > sunn hemp > pearl millet > cowpea. Intraspecific competition of a less competitive species was the greatest when the biculture was composed of two species in the same functional group. Competition coefficients were used to build models that estimated the biomass of each cover crop species in three-species and four-species mixtures. The competition coefficients and models were validated with an additional nine site-years testing the same cover crop mixtures. The biomass of a species in a site-year was accurately predicted 69% of the time (low root mean square error, correlation > 0.5, not biased, r2 > 0.5). Applying the framework, we designed three-species and four-species mixtures by identifying relative seeding rates that produced high biomass with high species evenness (i.e. high multifunctionality) at low seed costs based on a Pareto front analysis of 10,418 mixtures. Accounting for competition when constructing cover crop mixtures can improve the ecosystem services provided, and such an advancement is likely to lead to greater farmer adoption.


Asunto(s)
Fabaceae , Sorghum , Biomasa , Ecosistema , Poaceae
5.
Pest Manag Sci ; 76(12): 3887-3895, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32633078

RESUMEN

Harvest weed seed control (HWSC) comprises a set of tools and tactics that prevents the addition of weed seed to the soil seed bank, attenuating weed infestations and providing a method to combat the development and spread of herbicide-resistant weed populations. Initial HWSC research efforts in North America are summarized and, combined with the vast area of crops suitable for HWSC, clearly indicate strong potential for this technology. However, potential limitations exist that are not present in Australian cropping systems where HWSC was developed. These include rotations with crops that are not currently amenable to HWSC (e.g. corn), high moisture content at harvest, untimely harvest, and others. Concerns about weeds becoming resistant to HWSC (i.e. adapting) exist, as do shifts in weed species composition, particularly with the diversity of weeds in North America. Currently the potential of HWSC vastly outweighs any drawbacks, necessitating further research. Such expanded efforts should foremost include chaff lining and impact mill commercial scale evaluation, as this will address potential limitations as well as economics. Growers must be integrated into large-scale, on-farm research and development activities aimed at alleviating the problems of using HWSC systems in North America and drive greater adoption subsequently. © 2020 Society of Chemical Industry.


Asunto(s)
Resistencia a los Herbicidas , Herbicidas , Australia , Herbicidas/farmacología , América del Norte , Malezas , Semillas , Estados Unidos , Control de Malezas
6.
Front Plant Sci ; 11: 82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194580

RESUMEN

Hairy vetch, Vicia villosa (Roth), is a cover crop that does not exhibit a typical domestication syndrome. Pod dehiscence reduces seed yield and creates weed problems for subsequent crops. Breeding efforts aim to reduce pod dehiscence in hairy vetch. To characterize pod dehiscence in the species, we quantified visual dehiscence and force required to cause dehiscence among 606 genotypes grown among seven environments of the United States. To identify potential secondary selection traits, we correlated pod dehiscence with various morphological pod characteristics and field measurements. Genotypes of hairy vetch exhibited wide variation in pod dehiscence, from completely indehiscent to completely dehiscent ratings. Mean force to dehiscence also varied widely, from 0.279 to 8.97 N among genotypes. No morphological traits were consistently correlated with pod dehiscence among environments where plants were grown. Results indicated that visual ratings of dehiscence would efficiently screen against genotypes with high pod dehiscence early in the breeding process. Force to dehiscence may be necessary to identify the indehiscent genotypes during advanced stages of selection.

7.
J Environ Qual ; 47(6): 1400-1411, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30512067

RESUMEN

Cover crops are well recognized as a tool to reduce NO leaching from agroecosystems. However, their effectiveness varies from site to site and year to year depending on soil, cash and cover crop management, and climate. We conducted a meta-analysis using 238 observations from 28 studies (i) to assess the overall effect of cover crops on NO leaching and subsequent crop yields, and (ii) to examine how soil, cash and cover crop management, and climate impact the effect of non-leguminous cover crops on NO leaching. There is a clear indication that nonleguminous cover crops can substantially reduce NO leaching into freshwater systems, on average by 56%. Nonlegume-legume cover crop mixtures reduced NO leaching as effectively as nonlegumes, but significantly more than legumes. The lack of variance information in most published literature prevents greater insight into the degree to which cover crops can improve water quality. Among the factors investigated, we identified cover crop planting dates, shoot biomass, and precipitation relative to long-term mean precipitation as potential drivers for the observed variability in nonleguminous cover crop effectiveness in reducing NO leaching. We found evidence indicating greater reduction in NO leaching with nonleguminous cover crops on coarse-textured soils and during years of low precipitation (<90% of the long-term normal). Earlier fall planting and greater nonleguminous shoot biomass further reduced NO leaching. Overall, this meta-analysis confirms many prior studies showing that nonleguminous cover crops are an effective way to reduce NO leaching and should be integrated into cropping systems to improve water quality.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Nitratos/análisis , Contaminantes del Suelo/análisis , Ecosistema , Monitoreo del Ambiente
8.
Pest Manag Sci ; 74(11): 2424-2431, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29862629

RESUMEN

BACKGROUND: Resistance of pathogens and pests to antibiotics and pesticides worldwide is rapidly reaching critical levels. The common-pool-resource nature of this problem (i.e. whereby the susceptibility to treatment of target organisms is a shared resource) has been largely overlooked. Using herbicide-resistant weeds as a model system, we developed a discrete-time landscape-scale simulation to investigate how aggregating herbicide management strategies at different spatial scales from individual farms to larger cooperative structures affects the evolution of glyphosate resistance in common waterhemp (Amaranthus tuberculatus). RESULTS: Our findings indicate that high-efficacy herbicide management strategies practiced at the farm scale are insufficient to slow resistance evolution in A. tuberculatus. When best practices were aggregated at large spatial scales, resistance evolution was hindered; conversely, when poor management practices were aggregated, resistance was exacerbated. Tank mixture-based strategies were more effective than rotation-based strategies in most circumstances, while applying glyphosate alone resulted in the poorest outcomes. CONCLUSIONS: Our findings highlight the importance of landscape-scale cooperative management for confronting common-pool-resource resistance problems in weeds and other analogous systems. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Resistencia a los Herbicidas/genética , Malezas/efectos de los fármacos , Selección Genética , Control de Malezas/métodos , Amaranthus/efectos de los fármacos , Amaranthus/genética , Glicina/análogos & derivados , Glicina/farmacología , Herbicidas/farmacología , Modelos Biológicos , Malezas/genética , Análisis Espacial , Glifosato
9.
Sci Rep ; 8(1): 2004, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386563

RESUMEN

We used complementary morphological and DNA metabarcoding approaches to characterize soil nematode communities in three cropping systems, conventional till (CT), no-till (NT) and organic (ORG), from a long-term field experiment. We hypothesized that organic inputs to the ORG system would promote a more abundant nematode community, and that the NT system would show a more structured trophic system (higher Bongers MI) than CT due to decreased soil disturbance. The abundance of Tylenchidae and Cephalobidae both showed positive correlations to soil organic carbon and nitrogen, which were highest in the ORG system. The density of omnivore-predator and bacterial-feeding nematodes was reduced in NT soils compared to CT, while some plant-parasitic taxa increased. NT soils had similar Bongers MI values to CT, suggesting they contained nematode communities associated with soils experiencing comparable levels of disturbance. Metabarcoding revealed within-family differences in nematode diversity. Shannon and Simpson's index values for the Tylenchidae and Rhabditidae were higher in the ORG system than CT. Compared to morphological analysis, metabarcoding over- or underestimated the prevalence of several nematode families and detected some families not observed based on morphology. Discrepancies between the techniques require further investigation to establish the accuracy of metabarcoding for characterization of soil nematode communities.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico/métodos , Metagenoma , Suelo/parasitología , Tylenchida/genética , Animales , Tylenchida/clasificación
10.
J Sci Food Agric ; 98(11): 4253-4267, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29424423

RESUMEN

BACKGROUND: Winter pea (Pisum sativum L.) grows well in a wide geographic region, both as a forage and cover crop. Understanding the quality constituents of this crop is important for both end uses; however, analysis of quality constituents by conventional wet chemistry methods is laborious, slow and costly. Near infrared reflectance spectroscopy (NIRS) is a precise, accurate, rapid and cheap alternative to using wet chemistry for estimating quality constituents. We developed and validated NIRS calibration models for constituent analysis of this crop. RESULTS: Of the 11 constituent models developed, nine constituents including moisture, dry-matter, total-nitrogen, crude protein, acid detergent fiber, neutral detergent fiber, AD-lignin, cellulose and non-fibrous carbohydrate had low standard errors and a high coefficient of determination (R2 = 0.88-0.98; 1 - VR, which is the coefficient of determination during cross-validation = 0.77-0.92) for both calibration and cross-validation, indicating their potential for quantitative predictability. The calibration models for ash (R2 = 0.65; 1 - VR = 0.46) and hemicellulose (R2 = 0.75; 1 - VR = 0.50) also appeared to be adequate for qualitative screening. Predictions of an independent validation set yielded reliable agreement between the NIRS predicted values and the reference values with low standard error of prediction (SEP), low bias, high coefficient of determination (r2 = 0.82-0.95), high ratios of performance to deviation (RPD = SD/SEP; 2.30-3.85) and high ratios of performance to interquartile distance (RPIQ = IQ/SEP; 2.57-7.59) for all 11 constituents. CONCLUSION: Precise, accurate and rapid analysis of winter pea for major forage and cover crop quality constituents can be performed at a low cost using the NIRS calibration models developed. © 2018 Society of Chemical Industry.


Asunto(s)
Pisum sativum/química , Espectroscopía Infrarroja Corta/métodos , Calibración , Celulosa/análisis , Frutas/química , Lignina/análisis , Nitrógeno/análisis , Control de Calidad , Espectroscopía Infrarroja Corta/normas
11.
J Environ Qual ; 46(2): 247-254, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28380563

RESUMEN

Precipitation and irrigation induce pulses of NO emissions in agricultural soils, but the magnitude, duration, and timing of these pulses remain uncertain. This uncertainty makes it difficult to accurately extrapolate emissions from unmeasured time periods between chamber sampling events. Therefore, we developed a modeling protocol to predict NO emissions from data collected daily for 7 d after wetting events. Within a cover crop-based corn ( L.) production system in Beltsville, MD, we conducted the 7-d time series during four time periods representing a range of corn growth stages in 2013 and 2014. Treatments included mixtures and monocultures of grass and legume cover crops that were fertilized with pelletized poultry litter or urea-ammonium nitrate solution (9-276 kg N ha). Most fluxes did not exhibit the expected exponential decay over time (82%); therefore, cumulative emissions were calculated using trapezoidal integration over 7 d after the wetting event. Cumulative 7-d emissions were well correlated with single point gas fluxes on the second day after a wetting event using a generalized linear mixed model (ln[emissions] = 0.809∙ln[flux] + 2.47). Soil chemical covariates before or after a wetting event were weakly associated with cumulative emissions. The ratio of dissolved organic C to total inorganic N was negatively correlated with cumulative emissions ( = 0.23-0.29), whereas nitrate was positively correlated with cumulative emissions ( = 0.23-0.33). Our model is an innovative approach that is calibrated using site-specific time series data, which may then be used to estimate short-term NO emissions after wetting events using only a single flux measurement.


Asunto(s)
Óxido Nitroso/análisis , Suelo/química , Agricultura , Productos Agrícolas , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...