Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(52): e202314019, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37926680

RESUMEN

The key to type 1 copper (T1Cu) function lies in the fine tuning of the CuII/I reduction potential (E°'T1Cu ) to match those of its redox partners, enabling efficient electron transfer in a wide range of biological systems. While the secondary coordination sphere (SCS) effects have been used to tune E°'T1Cu in azurin over a wide range, these principles are yet to be generalized to other T1Cu-containing proteins to tune catalytic properties. To this end, we have examined the effects of Y229F, V290N and S292F mutations around the T1Cu of small laccase (SLAC) from Streptomyces coelicolor to match the high E°'T1Cu of fungal laccases. Using ultraviolet-visible absorption and electron paramagnetic resonance spectroscopies, together with X-ray crystallography and redox titrations, we have probed the influence of SCS mutations on the T1Cu and corresponding E°'T1Cu . While minimal and small E°'T1Cu increases are observed in Y229F- and S292F-SLAC, the V290N mutant exhibits a major E°'T1Cu increase. Moreover, the influence of these mutations on E°'T1Cu is additive, culminating in a triple mutant Y229F/V290N/S292F-SLAC with the highest E°'T1Cu of 556 mV vs. SHE reported to date. Further activity assays indicate that all mutants retain oxygen reduction reaction activity, and display improved catalytic efficiencies (kcat /KM ) relative to WT-SLAC.


Asunto(s)
Lacasa , Streptomyces coelicolor , Cobre/química , Lacasa/metabolismo , Mutación , Oxidación-Reducción , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
2.
Angew Chem Int Ed Engl ; 62(5): e202212440, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36398563

RESUMEN

Engineering enzymes with novel reactivity and applying them in metabolic pathways to produce valuable products are quite challenging due to the intrinsic complexity of metabolic networks and the need for high in vivo catalytic efficiency. Triacetic acid lactone (TAL), naturally generated by 2-pyrone synthase (2PS), is a platform molecule that can be produced via microbial fermentation and further converted into value-added products. However, these conversions require extra synthetic steps under harsh conditions. We herein report a biocatalytic system for direct generation of TAL derivatives under mild conditions with controlled chemoselectivity by rationally engineering the 2PS active site and then rewiring the biocatalytic pathway in the metabolic network of E. coli to produce high-value products, such as kavalactone precursors, with yields up to 17 mg/L culture. Computer modeling indicates sterics and hydrogen-bond interactions play key roles in tuning the selectivity, efficiency and yield.


Asunto(s)
Policétidos , Policétidos/metabolismo , Escherichia coli/metabolismo , Dominio Catalítico , Redes y Vías Metabólicas , Ingeniería Metabólica
3.
Chem Soc Rev ; 50(4): 2486-2539, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33475096

RESUMEN

Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.


Asunto(s)
Materiales Biomiméticos/química , Metaloproteínas/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas/química , Catálisis , Dominio Catalítico , Hemo/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
4.
J Am Chem Soc ; 142(32): 13779-13794, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32662996

RESUMEN

The primary and secondary coordination spheres of metal binding sites in metalloproteins have been investigated extensively, leading to the creation of high-performing functional metalloproteins; however, the impact of the overall structure of the protein scaffold on the unique properties of metalloproteins has rarely been studied. A primary example is the binuclear CuA center, an electron transfer cupredoxin domain of photosynthetic and respiratory complexes and, recently, a protein coregulated with particulate methane and ammonia monooxygenases. The redox potential, Cu-Cu spectroscopic features, and a valence delocalized state of CuA are difficult to reproduce in synthetic models, and every artificial protein CuA center to-date has used a modified cupredoxin. Here, we present a fully functional CuA center designed in a structurally nonhomologous protein, cytochrome c peroxidase (CcP), by only two mutations (CuACcP). We demonstrate with UV-visible absorption, resonance Raman, and magnetic circular dichroism spectroscopy that CuACcP is valence delocalized. Continuous wave and pulsed (HYSCORE) X-band EPR show it has a highly compact gz area and small Az hyperfine principal value with g and A tensors that resemble axially perturbed CuA. Stopped-flow kinetics found that CuA formation proceeds through a single T2Cu intermediate. The reduction potential of CuACcP is comparable to native CuA and can transfer electrons to a physiological redox partner. We built a structural model of the designed Cu binding site from extended X-ray absorption fine structure spectroscopy and validated it by mutation of coordinating Cys and His residues, revealing that a triad of residues (R48C, W51C, and His52) rigidly arranged on one α-helix is responsible for chelating the first Cu(II) and that His175 stabilizes the binuclear complex by rearrangement of the CcP heme-coordinating helix. This design is a demonstration that a highly conserved protein fold is not uniquely necessary to induce certain characteristic physical and chemical properties in a metal redox center.


Asunto(s)
Cobre/química , Citocromo-c Peroxidasa/química , Cobre/metabolismo , Cristalografía por Rayos X , Citocromo-c Peroxidasa/genética , Citocromo-c Peroxidasa/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica en Hélice alfa
5.
Acc Chem Res ; 52(4): 935-944, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30912643

RESUMEN

Metalloproteins set the gold standard for performing important functions, including catalyzing demanding reactions under mild conditions. Designing artificial metalloenzymes (ArMs) to catalyze abiological reactions has been a major endeavor for many years, but most ArM activities are far below those of native enzymes, making them unsuitable for most pratical applications. A critical step to advance the field is to fundamentally understand what it takes to not only confer but also fine-tune ArM activities so they match those of native enzymes. Indeed, only once we can freely modulate ArM activity to rival (or surpass!) natural enzymes can the potential of ArMs be fully realized. A key to unlocking ArM potential is the observation that one metal primary coordination sphere can display a range of functions and levels of activity, leading to the realization that secondary coordination sphere (SCS) interactions are critically important. However, SCS interactions are numerous, long-range, and weak, making them very difficult to reproduce in ArMs. Furthermore, natural enzymes are tied to a small set of biologically available functional moieties from canonical amino acids and physiologically available metal ions and metallocofactors, severely limiting the chemical space available to probe and tune ArMs. In this Account, we summarize the use of unnatural amino acids (UAAs) and non-native metal ions and metallocofactors by our group and our collaborators to probe and modulate ArM functions. We incorporated isostructural UAAs in a type 1 copper (T1Cu) protein azurin to provide conclusive evidence that axial ligand hydrophobicity is a major determinant of T1Cu redunction potential ( E°'). Closely related work from other groups are also discussed. We also probed the role of protein backbone interactions that cannot be altered by standard mutagenesis by replacing the peptide bond with an ester linkage. We used insight gained from these studies to tune the E°' of azurin across the entire physiological range, the broadest range ever achieved in a single metalloprotein. Introducing UAA analogues of Tyr into ArM models of heme-copper oxidase (HCO) revealed a linear relationship between p Ka, E°', and activity. We also substituted non-native hemes and non-native metal ions for their native equivalents in these models to resolve several issues that were intractable in native HCOs and the closely related nitric oxide reductases, such as their roles in modulating substrate affinity, electron transfer rate, and activity. We incorporated abiological cofactors such as ferrocene and Mn(salen) into azurin and myoglobin, respectively, to stabilize these inorganic and organometallic compounds in water, confer abiological functions, tune their E°' and activity through SCS interactions, and show that the approach to metallocofactor anchoring and orientation can tune enantioselectivity and alter function. Replacing Cu in azurin with non-native Fe or Ni can impart novel activities, such as superoxide reduction and C-C bond formation. While progress was made, we have identified only a small fraction of the interactions that can be generally applied to ArMs to fine-tune their functions. Because SCS interactions are subtle and heavily interconnected, it has been difficult to characterize their effects quantitatively. It is vital to develop spectroscopic and computational techniques to detect and quantify their effects in both resting states and catalytic intermediates.


Asunto(s)
Aminoácidos/metabolismo , Metaloproteínas/metabolismo , Metales/metabolismo , Aminoácidos/química , Azurina/metabolismo , Sitios de Unión , Etilenodiaminas/química , Etilenodiaminas/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Hemo/química , Hemo/metabolismo , Iones/química , Ligandos , Metalocenos/química , Metalocenos/metabolismo , Metaloproteínas/química , Metales/química , Mioglobina/química , Mioglobina/metabolismo , Oxidorreductasas/metabolismo , Estereoisomerismo
6.
Science ; 361(6407): 1098-1101, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30213908

RESUMEN

Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved-through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites-to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.


Asunto(s)
Biocatálisis , Coenzimas/química , Citocromo-c Peroxidasa/química , Proteínas Hierro-Azufre/química , Sulfitos/química , Sitios de Unión , Oxidación-Reducción , Ingeniería de Proteínas
7.
Proc Natl Acad Sci U S A ; 115(24): 6195-6200, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29802230

RESUMEN

Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeBMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme b with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeBMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.


Asunto(s)
Hemo , Oxidorreductasas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemo/química , Hemo/metabolismo , Histidina/química , Histidina/metabolismo , Cinética , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Análisis Espectral
8.
J Am Chem Soc ; 139(35): 12209-12218, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28768416

RESUMEN

The presence of a nonheme metal, such as copper and iron, in the heme-copper oxidase (HCO) superfamily is critical to the enzymatic activity of reducing O2 to H2O, but the exact mechanism the nonheme metal ion uses to confer and fine-tune the activity remains to be understood. We herein report that manganese and cobalt can bind to the same nonheme site and confer HCO activity in a heme-nonheme biosynthetic model in myoglobin. While the initial rates of O2 reduction by the Mn, Fe, and Co derivatives are similar, the percentages of reactive oxygen species (ROS) formation are 7%, 4%, and 1% and the total turnovers are 5.1 ± 1.1, 13.4 ± 0.7, and 82.5 ± 2.5, respectively. These results correlate with the trends of nonheme-metal-binding dissociation constants (35, 22, and 9 µM) closely, suggesting that tighter metal binding can prevent ROS release from the active site, lessen damage to the protein, and produce higher total turnover numbers. Detailed spectroscopic, electrochemical, and computational studies found no evidence of redox cycling of manganese or cobalt in the enzymatic reactions and suggest that structural and electronic effects related to the presence of different nonheme metals lead to the observed differences in reactivity. This study of the roles of nonheme metal ions beyond the Cu and Fe found in native enzymes has provided deeper insights into nature's choice of metal ion and reaction mechanism and allows for finer control of the enzymatic activity, which is a basis for the design of efficient catalysts for the oxygen reduction reaction in fuel cells.


Asunto(s)
Cobalto/química , Hemo/química , Manganeso/química , Modelos Moleculares , Oxidorreductasas/metabolismo , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
9.
Nat Chem ; 9(3): 257-263, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28221360

RESUMEN

Haem-copper oxidase (HCO) catalyses the natural reduction of oxygen to water using a haem-copper centre. Despite decades of research on HCOs, the role of non-haem metal and the reason for nature's choice of copper over other metals such as iron remains unclear. Here, we use a biosynthetic model of HCO in myoglobin that selectively binds different non-haem metals to demonstrate 30-fold and 11-fold enhancements in the oxidase activity of Cu- and Fe-bound HCO mimics, respectively, as compared with Zn-bound mimics. Detailed electrochemical, kinetic and vibrational spectroscopic studies, in tandem with theoretical density functional theory calculations, demonstrate that the non-haem metal not only donates electrons to oxygen but also activates it for efficient O-O bond cleavage. Furthermore, the higher redox potential of copper and the enhanced weakening of the O-O bond from the higher electron density in the d orbital of copper are central to its higher oxidase activity over iron. This work resolves a long-standing question in bioenergetics, and renders a chemical-biological basis for the design of future oxygen-reduction catalysts.


Asunto(s)
Cobre/química , Hierro/química , Oxidorreductasas/química , Oxígeno/química , Biocatálisis , Cobre/metabolismo , Técnicas Electroquímicas , Hierro/metabolismo , Cinética , Modelos Teóricos , Oxidación-Reducción , Oxidorreductasas/metabolismo , Espectrofotometría Infrarroja , Zinc/química
10.
Biochemistry ; 55(10): 1494-502, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26885726

RESUMEN

Noncovalent second-shell interactions are important in controlling metal-binding affinity and activity in metalloenzymes, but fine-tuning these interactions in designed metalloenzymes has not been fully explored. As a result, most designed metalloenzymes have low metal-binding affinity and activity. Here we identified three mutations in the second coordination shell of an engineered Mn(II)-binding site in cytochrome c peroxidase (called MnCcP.1, containing Glu45, Glu37, and Glu181 ligands) that mimics the native manganese peroxidase (MnP), and explored their effects on both Mn(II)-binding affinity and MnP activity. First, removing a hydrogen bond to Glu45 through Tyr36Phe mutation enhanced Mn(II)-binding affinity, as evidenced by a 2.8-fold decrease in the KM of Mn(II) oxidation. Second, introducing a salt bridge through Lys179Arg mutation improved Glu35 and Glu181 coordination to Mn(II), decreasing KM 2.6-fold. Third, eliminating a steric clash that prevented Glu37 from orienting toward Mn(II) resulted in an 8.6-fold increase in kcat/KM, arising primarily from a 3.6-fold decrease in KM, with a KM value comparable to that of the native enzyme (0.28 mM vs 0.19 mM for Pleurotus eryngii MnP PS3). We further demonstrated that while the effects of Tyr36Phe and Lys179Arg mutations are additive, because involved in secondary-shell interactions to different ligands, other combinations of mutations were antagonistic because they act on different aspects of the Mn(II) coordination at the same residues. Finally, we showed that these MnCcP variants are functional models of MnP that mimic its activity in both Mn(II) oxidation and degradation of a phenolic lignin model compound and kraft lignin. In addition to achieving KM in a designed protein that is similar to the that of native enzyme, our results offer molecular insight into the role of noncovalent interactions around metal-binding sites for improving metal binding and overall activity; such insight can be applied to rationally enhance these properties in other metalloenzymes and their models.


Asunto(s)
Citocromo-c Peroxidasa/metabolismo , Manganeso/metabolismo , Peroxidasas/metabolismo , Sitios de Unión/fisiología , Cristalización , Citocromo-c Peroxidasa/química , Activación Enzimática/fisiología , Manganeso/química , Peroxidasas/química , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...