Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Genet ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619706

RESUMEN

Glycogen storage diseases (GSDs) are a group of rare inherited metabolic disorders characterized by clinical, locus, and allele heterogeneity. This study aims to investigate the phenotype and genotype spectrum of GSDs in a cohort of 14 families from Iran using whole-exome sequencing (WES) and variant analysis. WES was performed on 14 patients clinically suspected of GSDs. Variant analysis was performed to identify genetic variants associated with GSDs. A total of 13 variants were identified, including six novel variants, and seven previously reported pathogenic variants in genes such as AGL, G6PC, GAA, PYGL, PYGM, GBE1, SLC37A4, and PHKA2. Most types of GSDs observed in the cohort were associated with hepatomegaly, which was the most common clinical presentation. This study provides valuable insights into the phenotype and genotype spectrum of GSDs in a cohort of Iranian patients. The identification of novel variants adds to the growing body of knowledge regarding the genetic landscape of GSDs and has implications for genetic counseling and future therapeutic interventions. The diverse nature of GSDs underscores the need for comprehensive genetic testing methods to improve diagnostic accuracy. Continued research in this field will enhance our understanding of GSDs, ultimately leading to improved management and outcomes for individuals affected by these rare metabolic disorders.

2.
Heliyon ; 10(6): e27434, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38501011

RESUMEN

Background and aims: The occurrence of thiamine metabolism dysfunction syndrome (THMD), a rare autosomal recessive condition, may be linked to various mutations found in the TPK1 and SLC19A3 genes. The disease chiefly manifests through ataxia, muscle hypotonia, abrupt or subacute onset encephalopathy, and a decline in developmental milestones achieved during the early stages of infancy. We present findings from an investigation that involved two individuals from Iran, both of whom experienced seizures along with ataxia and hypotonia. The underlying genetic causes were found with the use of next-generation sequencing (NGS) technology, which has facilitated the detection of causal changes in a variety of genetic disorders. Material and methods: The selection of cases for this study was based on the phenotypic and genetic information that was obtainable from the Center for Comprehensive Genetic Services. The genetic basis for the problems observed among the participants was determined through the application of whole-exome sequencing (WES). Subsequently, sanger sequencing was employed as a means of validating any identified variations suspected to be causative. Results: The first patient exhibited a homozygous mutation in the TPK1 gene, NM_022445.4:c.224 T > A:p.I75 N, resulting in the substitution of isoleucine for asparagine at position 75 (p.I75 N). In our investigation, patient 2 exhibited a homozygous variant, NM_025243.4:c.1385dupA:pY462X, within the SLC19A3 gene. Conclusions: Collectively, when presented with patients showcasing ataxia, encephalopathy, and basal ganglia necrosis, it is essential to account for thiamine deficiency in light of the potential advantages of prompt intervention. At times, it may be feasible to rectify this deficiency through the timely administration of thiamine dosages. Accordingly, based on the results of the current investigation, these variations may be useful for the diagnosis and management of patients with THMD.

3.
Neurol Sci ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421525

RESUMEN

BACKGROUND: The ultra-rare autosomal recessive genetic disorder, You-Hoover-Fong Syndrome (YHFS), is caused by defects in the TELO2 gene and is characterized by intellectual disability, developmental delay, and ocular impairments. This study aims to contribute to a better understanding of YHFS by reviewing previous cases and introducing a novel variant in a new case. METHODS: Whole exome sequencing (WES) was conducted on the proband to identify genetic variants, and Sanger sequencing was used to confirm variants within the family. This article presents a comprehensive collection of reported cases of YHFS, incorporating both molecular and clinical data, through an extensive literature search and analysis of English-language studies published until June 2023. RESULTS: Using WES, a novel homozygous missense variant, c.1799A > G (p. Tyr600Cys), was identified in the TELO2 gene in a 4-year-old Iranian male patient. Novel clinical features, including choanal atresia and clubfoot, were also identified. A comprehensive literature review identified 27 patients with YHFS, with 20 variants in the TELO2 gene. Missense pathogenic variants were the most common type of pathogenic variant, and the most common features were microcephaly and intellectual impairment. CONCLUSION: This study presents the first case of pathogenic variants in TELO2 gene in Iran, expands the genotypic and phenotypic spectrum of YHFS and contributes to the growing body of literature pertaining to YHFS. Furthermore, our findings highlight the importance of genetic testing for non-consanguineous carrier screening, as compound heterozygosity may be a significant factor in the development of YHFS. Further research is needed to clarify the molecular mechanisms underlying YHFS pathogenesis.

4.
BMC Med Genomics ; 17(1): 51, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347586

RESUMEN

BACKGROUND: Pontocerebellar hypoplasia is an umbrella term describing a heterogeneous group of prenatal neurodegenerative disorders mostly affecting the pons and cerebellum, with 17 types associated with 25 genes. However, some types of PCH lack sufficient information, which highlights the importance of investigating and introducing more cases to further elucidate the clinical, radiological, and biochemical features of these disorders. The aim of this study is to provide an in-depth review of PCH and to identify disease genes and their inheritance patterns in 12 distinct Iranian families with clinically confirmed PCH. METHODS: Cases included in this study were selected based on their phenotypic and genetic information available at the Center for Comprehensive Genetic Services. Whole-exome sequencing (WES) was used to discover the underlying genetic etiology of participants' problems, and Sanger sequencing was utilized to confirm any suspected alterations. We also conducted a comprehensive molecular literature review to outline the genetic features of the various subtypes of PCH. RESULTS: This study classified and described the underlying etiology of PCH into three categories based on the genes involved. Twelve patients also were included, eleven of whom were from consanguineous parents. Ten different variations in 8 genes were found, all of which related to different types of PCH. Six novel variations were reported, including SEPSECS, TSEN2, TSEN54, AMPD2, TOE1, and CLP1. Almost all patients presented with developmental delay, hypotonia, seizure, and microcephaly being common features. Strabismus and elevation in lactate levels in MR spectroscopy were novel phenotypes for the first time in PCH types 7 and 9. CONCLUSIONS: This study merges previously documented phenotypes and genotypes with unique novel ones. Due to the diversity in PCH, we provided guidance for detecting and diagnosing these heterogeneous groups of disorders. Moreover, since certain critical conditions, such as spinal muscular atrophy, can be a differential diagnosis, providing cases with novel variations and clinical findings could further expand the genetic and clinical spectrum of these diseases and help in better diagnosis. Therefore, six novel genetic variants and novel clinical and paraclinical findings have been reported for the first time. Further studies are needed to elucidate the underlying mechanisms and potential therapeutic targets for PCH.


Asunto(s)
Enfermedades Cerebelosas , Proteínas Nucleares , Femenino , Embarazo , Humanos , Irán , Genotipo , Fenotipo , Mutación
5.
Cancer Cell Int ; 24(1): 26, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200584

RESUMEN

This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.

6.
BMC Med Genomics ; 17(1): 20, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216990

RESUMEN

BACKGROUND: Cornelia de Lange Syndrome (CdLS) is a rare genetic disorder characterized by a range of physical, cognitive, and behavioral abnormalities. This study aimed to perform a comprehensive review of the literature on CdLS and investigate two cases of CdLS with distinct phenotypes that underwent WES to aid in their diagnosis. METHODS: We conducted a comprehensive review of the literature on CdLS along with performing whole-exome sequencing on two CdLS patients with distinct phenotypes, followed by Sanger sequencing validation and in-silico analysis. RESULTS: The first case exhibited a classic CdLS phenotype, but the initial WES analysis of blood-derived DNA failed to identify any mutations in CdLS-related genes. However, a subsequent WES analysis of skin-derived DNA revealed a novel heterozygous mutation in the NIPBL gene (NM_133433.4:c.6534_6535del, p.Met2178Ilefs*8). The second case was presented with a non-classic CdLS phenotype, and WES analysis of blood-derived DNA identified a heterozygous missense variant in the SMC1A gene (NM_006306.4:c.2320G>A, p.Asp774Asn). CONCLUSIONS: The study shows the importance of considering mosaicism in classic CdLS cases and the value of WES for identifying genetic defects. These findings contribute to our understanding of CdLS genetics and underscore the need for comprehensive genetic testing to enhance the diagnosis and management of CdLS patients.


Asunto(s)
Proteínas de Ciclo Celular , Síndrome de Cornelia de Lange , Humanos , Proteínas de Ciclo Celular/genética , Exoma , Mutación , Fenotipo , ADN , Biopsia , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/diagnóstico
7.
Neurol Sci ; 44(12): 4491-4498, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37452996

RESUMEN

Infantile hypotonia with psychomotor retardation and characteristic facies 1 (IHPRF1) is caused by biallelic mutations in the NALCN gene, the major ion channel responsible for the background Na + conduction in neurons. Through whole-exome sequencing (WES), we report three novel homozygous variants in three families, including c.1434 + 1G > A, c.3269G > A, and c.2648G > T, which are confirmed and segregated by Sanger sequencing. Consequently, intron 12's highly conserved splice donor location is disrupted by the pathogenic c.1434 + 1G > A variation, most likely causing the protein to degrade through nonsense-mediated decay (NMD). Subsequently, a premature stop codon is thus generated at amino acid 1090 of the protein as a result of the pathogenic c.3269G > A; p.W1090* variation, resulting in NMD or truncated protein production. Lastly, the missense mutation c.2648G > T; p.G883V can play a critical role in the interplay of functional domains. This study introduces recurrent urinary tract infections for the first time, broadening the phenotypic range of IHPRF1 syndrome in addition to the genotypic spectrum. This trait may result from insufficient bladder emptying, which may be related to the NALCN channelosome's function in background Na + conduction. This work advances knowledge about the molecular genetic underpinnings of IHPRF1 and introduces a novel phenotype through the widespread use of whole exome sequencing.


Asunto(s)
Canales de Sodio , Infecciones Urinarias , Humanos , Canales de Sodio/genética , Canales de Sodio/metabolismo , Canales Iónicos/genética , Proteínas de la Membrana/genética , Fenotipo , Mutación Missense , Síndrome , Infecciones Urinarias/genética , Mutación/genética
8.
Neuromuscul Disord ; 33(7): 589-595, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37393748

RESUMEN

Megaconial congenital muscular dystrophy (OMIM: 602,541) related to CHKB gene mutation is a newly defined rare autosomal recessive disorder, with multisystem involvement presenting from the neonatal period to adolescence. Choline kinase beta, lipid transport enzyme, catalyzes the biosynthesis of phosphatidylcholine and phosphatidylethanolamine, two major components of the mitochondrial membrane, on which respiratory enzyme activities are dependent. CHKB gene variants lead to loss-of-function of choline kinase b and lipid metabolism defects and mitochondrial structural changes. To date, many megaconial congenital muscular dystrophy cases due to CHKB gene variants have been reported worldwide. We describe thirteen Iranian megaconial congenital muscular dystrophy cases related to CHKB gene variants, including clinical presentations, laboratory and muscle biopsy findings, and novel CHKB gene variants. The most common symptoms and signs included intellectual disability, delayed gross-motor developmental milestones, language skills problems, muscle weakness, as well as autistic features, and behavioral problems. Muscle biopsy examination showed the striking finding of peripheral arrangements of large mitochondria in muscle fibers and central sarcoplasmic areas devoid of mitochondria. Eleven different CHKB gene variants including six novel variants were found in our patients. Despite the rarity of this disorder, recognition of the multisystem clinical presentations combined with characteristic findings of muscle histology can properly guide to genetic evaluation of CHKB gene.


Asunto(s)
Músculo Esquelético , Distrofias Musculares , Adolescente , Humanos , Recién Nacido , Colina Quinasa/genética , Irán , Músculo Esquelético/patología , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/patología
9.
Neurol Sci ; 44(11): 4041-4048, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37369877

RESUMEN

Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) is a rare autosomal dominant genetic disorder caused by genetic alterations in the CTNNB1 gene. CTNNB1 is a gene that encodes ß-catenin, an effector protein in the canonical Wnt pathway involved in stem cell differentiation and proliferation, synaptogenesis, and a wide range of essential cellular mechanisms. Mutations in this gene are also found in specific malignancies as well as exudative vitreoretinopathy. To date, only a limited number of cases of this disease have been reported, and though they share some phenotypic manifestations such as intellectual disability, developmental delay, microcephaly, behavioral abnormalities, and dystonia, the variety of phenotypic traits of these patients shows extreme heterogeneity. In this study, two cases of NEDSDV with de novo CTNNB1 mutations: c.1420C>T(p.R474X) and c.1377_1378Del(p.Ala460Serfs*29), found with whole exome sequencing (WES) have been reported and the clinical and paraclinical characteristics of these patients have been described. Due to such a wide range of clinical characteristics, the identification of new patients and novel variants is of great importance in order to establish a more complete phenotypic spectrum, as well as to conclude the genotype-phenotype correlations in these cases.

10.
Hum Genet ; 142(8): 1001-1016, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37074398

RESUMEN

Neuronal ceroid lipofuscinoses (NCLs) are neurodegenerative lysosomal storage diseases which are considered among the most frequent causes of dementia in childhood worldwide This study aimed to identify the gene variants, molecular etiologies, and clinical features in 23 unrelated Iranian families with NCL. In total, 29 patients with neuronal ceroid lipofuscinoses (NCLs), diagnosed based on clinical manifestations, MRI neuroimaging, and electroencephalography (EEG), were recruited for this study. Through whole-exome sequencing (WES), functional prediction, Sanger sequencing, and segregation analysis, we found that 12 patients (41.3%) with mutations in the CLN6 gene, 7 patients (24%) with the TPP1 (CLN2) gene variants, and 4 patients (13.7%) with mutations in the MFSD8 (CLN7) gene. Also, mutations in each of the CLN3 and CLN5 genes were detected in 2 cases and mutations of each PPT1 (CLN1) and CLN8 gene were observed in only 1 separate patient. We identified 18 different mutations, 11 (61%) of which are novel, never have been reported before, and the others have been previously described. The gene variants identified in this study expand the number of published clinical cases and the variant frequency spectrum of the neuronal ceroid lipofuscinoses (NCLs) genes; moreover, the identification of these variants supplies foundational clues for future NCL diagnosis and therapy.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Tripeptidil Peptidasa 1 , Humanos , Irán , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Mutación , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética
11.
Metab Brain Dis ; 38(1): 1-16, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36173507

RESUMEN

Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Excitatory amino acid transporters (EAATs) have important roles in the uptake of glutamate and termination of glutamatergic transmission. Up to now, five EAAT isoforms (EAAT1-5) have been identified in mammals. The main focus of this review is EAAT2. This protein has an important role in the pathoetiology of epilepsy. De novo dominant mutations, as well as inherited recessive mutation in this gene, have been associated with epilepsy. Moreover, dysregulation of this protein is implicated in a range of neurological diseases, namely amyotrophic lateral sclerosis, alzheimer's disease, parkinson's disease, schizophrenia, epilepsy, and autism. In this review, we summarize the role of EAAT2 in epilepsy and other neurological disorders, then provide an overview of the therapeutic modulation of this protein.


Asunto(s)
Epilepsia , Esquizofrenia , Animales , Humanos , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Epilepsia/genética , Esquizofrenia/metabolismo , Transporte Biológico , Ácido Glutámico/metabolismo , Mamíferos/metabolismo
12.
Neuromuscul Disord ; 32(10): 806-810, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36309462

RESUMEN

Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) is a rare inherited autosomal recessive disease due to bi-allelic mutations in the ASAH1 gene. SMA-PME is characterized by progressive muscle weakness from three to seven years of age, accompanied by epilepsy, intractable seizures, and sometimes sensorineural hearing loss. To the best of our knowledge, 47 cases have been reported. The present study reports five patients from four different families affected by SMA-PME characterized by progressive myoclonic epilepsy, proximal weakness, and lower motor neuron disease, as proven by electrodiagnostic studies. Genetic analysis identified two different mutations in the ASAH1 (NM_177924.4) gene, a previously reported pathogenic variant, c.125C>T (p.Thr42Met), and a novel likely pathogenic variant c.109C>A (p.Pro37Thr). In addition to reporting a novel pathogenic variant in the ASAH1 gene causing SMA-PME disease, this study compares the signs, phenotypic, and genetic findings of the case series with previous reports and discusses some symptomatic treatments.


Asunto(s)
Enfermedad de la Neurona Motora , Atrofia Muscular Espinal , Epilepsias Mioclónicas Progresivas , Humanos , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/diagnóstico , Epilepsias Mioclónicas Progresivas/patología , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Mutación
13.
Clin Case Rep ; 10(8): e6195, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35937029

RESUMEN

Pathogenic mutations in the FARSB gene are associated with neurodevelopmental disorder involving the brain, liver, and lungs. We report genetic analysis of a family including two affected members with this disorder, which revealed a homozygous pathogenic missense variant, FARSB: NM_005687.4:c.853G > A:p.E285K in both affected patients. The parents were heterozygous for this variant.

14.
Iran J Child Neurol ; 16(2): 117-128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35497098

RESUMEN

Objective: Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric group of pervasive developmental disorders mainly diagnosed through the complex behavioral phenotype. According to strong genetic involvement, detecting the chromosome regions and the key genes linked to autism can help to elucidate its etiology. The present study aimed to investigate the value of cytogenetic analysis in syndromic autism and find an association between autism and chromosome abnormalities. Materials & Methods: Thirty-six autistic patients from 30 families were recruited, clinically diagnosed with the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5). The syndromic patients with additional clinical features (including development delay, attention deficit, hyperactivity disorder, seizure, and language and intellectual impairment) were selected due to elevating the detection rate. Cytogenetics analysis was performed using GTG banding on the patients' cultured fibroblasts. Moreover, array-comparative genomic hybridization (CGH) was also performed for patients with a de novo and novel variant. Results: Karyotype analysis in 36 syndromic autistic patients detected chromosomal abnormalities in 2 (5.6%) families, including 46,XY,dup(15)(q11.1q11.2) and 46,XX,ins(7)(q11.1q21.3)dn. In the latter, array-CGH detected 3 abnormalities on chromosome 7, including deletion and insertion on both arms: 46,XX,del(7)(q21.11q21.3),dup(7)(p11.2p14.1p12.3)dn. Conclusion: We reported a novel and de novo cytogenetic abnormality on chromosome 7 in an Iranian patient diagnosed with syndromic autism. However, the detection rate in syndromic autism was low, implying that it cannot be utilized as the only diagnostic procedure.

15.
Neurol Sci ; 43(4): 2859-2863, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35099645

RESUMEN

CTNNB1 encodes for the ß-catenin protein, a component of the cadherin adhesion complex, which regulates cell-cell adhesion and gene expression in the canonical Wnt signaling pathway. Mutations in CTNNB1 have been reported to be associated with cancer and mental disorders. Recently, loss-of-function mutations in CTNNB1 have been observed in patients with intellectual disability and some other clinical manifestations including motor and language delays, microcephaly, and mild visual defects. We report an 8-year-old Iranian girl with intellectual disability, hypotonia, impaired vision such as vitreomacular adhesion, motor delay, and speech delay. A novel, de novo nonsense mutation (c.1014G > A; p.Trp338Ter) in exon 7 of the CTNNB1 (NM_001904) gene was detected and confirmed by whole-exome sequencing and Sanger sequencing, respectively. This study helps to expand the growing list of loss-of-function mutations known in the CTNNB1 gene.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Niño , Codón sin Sentido , Femenino , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Irán , Mutación/genética , beta Catenina/genética
16.
Int J Endocrinol ; 2021: 4367028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938333

RESUMEN

X-linked congenital adrenal hypoplasia due to NR0B1 mutation is characterized by hypogonadotropic hypogonadism (HH) and infertility. Here, we describe a novel pathogenic frameshift variant in NR0B1 associated with congenital adrenal hypoplasia by whole exome sequencing in an Iranian case with high level of testosterone. Clinical evaluations and pedigree drawing were performed. Point mutations, gene conversions, and large deletions of the CYP21A2 gene were checked. WES and segregation analyses were conducted. In silico analysis was also performed for the novel variant. The ACTH, 17-hydroxy progesterone c, and DHEA sulfate values were elevated up to 624.6 pg/mL, 8.6 pmol/L, and 17.8UMOL/L, respectively. No mutation was found in the CYP21A2 gene. WES identified a novel hemizygous frameshift insertion c.218_219insACCA: p.His73GlnfsTer41 variant in the NR0B1 gene with a pathogenic effect according to ACMG criteria. Genetic testing is helpful for differential diagnosis in primary adrenal insufficiency disorders. NR0B1 may be a common cause of congenital adrenal hypoplasia in our population.

17.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-34475317

RESUMEN

This study aimed to examine the expression of the genes associated with different development stages of primordial germ cells (PGCs) in differentiating mouse embryonic stem cells (mESCs). The cells were cultured in three groups of control, 10-8 M of all-trans retinoic acid and the combination of 10-7 M of Progesterone and retinoic acid for 7, 12, 17, and 22 days. Immunofluorescent and Quantitative RT-PCR were used to evaluate the effect of progesterone on the differentiation of mESCs into primordial germ cells. RA-treated cells exhibited increased expression of Fragilis, Stella, Dazl, Stra8, Sycp3, and Gdf9 genes and decreased expression of Oct4, Mvh genes compared to the non-treated controls. Furthermore, RA in combination with progesterone (RA?P) led to increased expression of Oct4, Fragilis, Stella, Dazl, Sycp3, Gdf9 and decreased expression of Mvh, and Stra8 genes compared to the RA-treated scenario. Immunofluorescence detection of Stella and Mvh showed that the expression levels of the cells treated with RA+P are much higher than those of the other groups. Our project showed that under the influence of the induced factors, mESCs can spontaneously differentiate into germ cells. Also, the combination of RA+P can enhance and accelerate the differentiation of mESCs into germ cells.


Asunto(s)
Células Madre Embrionarias de Ratones/efectos de los fármacos , Progesterona/farmacología , Tretinoina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Germinativas , Ratones , Células Madre Embrionarias de Ratones/fisiología
18.
Clin Genet ; 100(5): 637-640, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34370298

RESUMEN

HECT And RLD Domain-Containing E3 Ubiquitin Protein Ligase 2, or HERC2, codes an ubiquitin ligase that has an important role in key cellular processes including cell cycle regulation, DNA repair, mitochondrial functions, and spindle formation during mitosis. While HERC2 Neurodevelopmental Disorder in Old Order Amish is a well characterized human disorder involving HERC2, bi-allelic HERC2 loss of function has only been described in three families and results in a more severe neurodevelopmental disorder. Herein, we delineate the HERC2 loss of function phenotype by describing three previously unreported patients, and by summarizing the molecular and phenotypic information of all known HERC2 missense variants and biallelic loss of function patients. Collectively, these twelve individuals present with recurring features that define a syndrome with varying combinations of severe neurodevelopmental delay, structural brain anomalies, seizures, hypotonia, feeding difficulties, hearing and vision issues, and renal anomalies. This study describes a distinct neurodevelopmental disorder, emphasizing the importance of further characterization of HERC2-related disorders, as well as highlighting the importance of ongoing work into understanding these critical neurodevelopmental pathways.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación con Pérdida de Función , Mutación Missense , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Alelos , Sustitución de Aminoácidos , Estudios de Asociación Genética/métodos , Genotipo , Humanos
19.
Andrologia ; 53(1): e13847, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33099786

RESUMEN

Disorders of sex development (DSD) are different types of conditions that their accurate diagnosis by using conventional phenotypic and biochemical approaches is a challenging issue. Precise determination of DSD is critical due to the detection of possible life-threatening associated disorders. It may also assist parents in choosing the most suitable management for their affected child. In this study, two affected kids born from consanguineous families who were clinically diagnosed for sex development disorder were investigated for the main cause of the disease. Biochemical analysis failed to make an accurate diagnosis. Karyotype analysis showed an abnormal sex chromosome pattern. Whole exome sequencing was sequentially applied to precisely ascertain the genetic cause of the disease. A novel deletion, g.40936_53878del12943insTG (NG_008365.1), and one known mutation, c.586G>A (p.Gly196Ser), were detected in SRD5A2 gene in case I and case II respectively. Further analysis was performed using polymerase chain reaction, primer walking and Sanger sequencing to detect the nucleotides changes accurately. Segregation analysis in the families confirmed 13kb novel homozygous deletion of SRD5A2 in case I and c.586G>A in case II. The present study confirms the diagnostic value of whole exome sequencing in the detection of DSD aetiology, especially when several differential diagnoses are possible.


Asunto(s)
Trastornos del Desarrollo Sexual , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Niño , Trastornos del Desarrollo Sexual/diagnóstico , Trastornos del Desarrollo Sexual/genética , Homocigoto , Humanos , Irán , Proteínas de la Membrana/genética , Mutación , Linaje , Eliminación de Secuencia
20.
Transfus Clin Biol ; 27(4): 243-252, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32798758

RESUMEN

OBJECTIVE: Invasive biopsy during the pregnancy is associated with an abortion risk of approximately 1% for the fetus. Free fetal DNA in maternal plasma is an excellent source of genetic material for prenatal molecular diagnoses. This study was conducted to investigate beta-thalassemia mutation in the fetus through maternal blood with multiple polymorphisms as haplotypes in the beta-globin gene. METHODS: In this study, a total of 33 beta-thalassemia carrier (minor) couples were genotyped by ARMS-PCR for IVSII-IG>A mutation. During pregnancy, 10mL of blood was collected from pregnant women, and DNA was extracted by the magnetic bead-based extraction, and fetal DNA was enriched with AMPure XP kit. Five polymorphisms in 4 haplotype groups were evaluated by the Sanger Sequencing method. Finally, results were compared with those of the invasion method. RESULTS: Participants in study were 33 couples, mean age of the men was 26±5 years, and mean age of women was 23±4 years, and mean MCV, MCH, HbA2 blood parameters were 62.4±5.3, 19.6±3.1, 4.2±2.1 respectively. A total of 33 fetuses were genotyped for IVSII-IG>A mutation. Nine fetuses were affected, 10 fetuses were normal and 14 fetuses were carrier of beta-thalassemia. Sensitivity and specificity of Sanger Sequencing were equal to 88.8% and 91.6% respectively. Positive and negative predictive values were obtained as 80% and 95.6%, respectively. CONCLUSION: Mutational status of the fetus can be assessed by determining inheritance of paternally-derived alleles based on detection of haplotype-associated SNP in maternal plasma. Magnetic-based DNA extraction and fetal DNA enrichment are very simple and easy to perform and have satisfactory accuracy.


Asunto(s)
Ácidos Nucleicos Libres de Células/análisis , Diagnóstico Prenatal , Globinas beta , Talasemia beta , Adulto , Femenino , Feto , Haplotipos , Humanos , Masculino , Herencia Paterna , Polimorfismo de Nucleótido Simple , Embarazo , Adulto Joven , Globinas beta/genética , Talasemia beta/diagnóstico , Talasemia beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...