Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39062579

RESUMEN

The tumor necrosis factor receptor-associated factor 1 (TRAF1) plays a key role in promoting lymphocyte survival, proliferation, and cytokine production. Recent evidence showed that TRAF1 plays opposing roles in monocytes and macrophages where it controls NF-κB activation and limits pro-inflammatory cytokine production as well as inflammasome-dependent IL-1ß secretion. Importantly, TRAF1 polymorphisms have been strongly linked to an increased risk of rheumatoid arthritis (RA). However, whether and how TRAF1 contributes to RA pathogenesis is not fully understood. Moreover, investigating the role of TRAF1 in driving RA pathogenesis is complicated by its multifaceted and opposing roles in various immune cells. In this study, we subjected wildtype (WT) mice to the collagen antibody-induced arthritis (CAIA) model of RA and injected them intra-articularly with WT- or TRAF1-deficient macrophages. We show that mice injected with TRAF1-deficient macrophages exhibited significantly exacerbated joint inflammation, immune cell infiltration, and tissue damage compared to mice injected with WT macrophages. This study may lay the groundwork for novel therapies for RA that target TRAF1 in macrophages.


Asunto(s)
Artritis Reumatoide , Macrófagos , Factor 1 Asociado a Receptor de TNF , Animales , Factor 1 Asociado a Receptor de TNF/genética , Factor 1 Asociado a Receptor de TNF/metabolismo , Factor 1 Asociado a Receptor de TNF/deficiencia , Artritis Reumatoide/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Macrófagos/metabolismo , Ratones , Artritis Experimental/patología , Artritis Experimental/genética , Artritis Experimental/metabolismo , Artritis Experimental/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Biomed Pharmacother ; 171: 116119, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181714

RESUMEN

AIMS: Adiponectin has been shown to mediate cardioprotective effects and levels are typically reduced in patients with cardiometabolic disease. Hence, there has been intense interest in developing adiponectin-based therapeutics. The aim of this translational research study was to examine the functional significance of targeting adiponectin signaling with the adiponectin receptor agonist ALY688 in a mouse model of heart failure with reduced ejection fraction (HFrEF), and the mechanisms of cardiac remodeling leading to cardioprotection. METHODS AND RESULTS: Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricular pressure overload (PO), or sham surgery, with or without daily subcutaneous ALY688-SR administration. Temporal analysis of cardiac function was conducted via weekly echocardiography for 5 weeks and we observed that ALY688 attenuated the PO-induced dysfunction. ALY688 also reduced cardiac hypertrophic remodeling, assessed via LV mass, heart weight to body weight ratio, cardiomyocyte cross sectional area, ANP and BNP levels. ALY688 also attenuated PO-induced changes in myosin light and heavy chain expression. Collagen content and myofibroblast profile indicated that fibrosis was attenuated by ALY688 with TIMP1 and scleraxis/periostin identified as potential mechanistic contributors. ALY688 reduced PO-induced elevation in circulating cytokines including IL-5, IL-13 and IL-17, and the chemoattractants MCP-1, MIP-1ß, MIP-1alpha and MIP-3α. Assessment of myocardial transcript levels indicated that ALY688 suppressed PO-induced elevations in IL-6, TLR-4 and IL-1ß, collectively indicating anti-inflammatory effects. Targeted metabolomic profiling indicated that ALY688 increased fatty acid mobilization and oxidation, increased betaine and putrescine plus decreased sphingomyelin and lysophospholipids, a profile indicative of improved insulin sensitivity. CONCLUSION: These results indicate that the adiponectin mimetic peptide ALY688 reduced PO-induced fibrosis, hypertrophy, inflammation and metabolic dysfunction and represents a promising therapeutic approach for treating HFrEF in a clinical setting.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Adiponectina/metabolismo , Receptores de Adiponectina/metabolismo , Volumen Sistólico , Miocitos Cardíacos , Fibrosis , Remodelación Ventricular , Ratones Endogámicos C57BL
3.
J Immunol ; 210(5): 531-535, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36637223

RESUMEN

Secretion of IL-1ß, a potent cytokine that plays a key role in gout pathogenesis, is regulated by inflammasomes. TRAF1 has been linked to heightened risk to inflammatory arthritis. In this article, we show that TRAF1 negatively regulates inflammasome activation to limit caspase-1 and IL-1ß secretion in human and mouse macrophages. TRAF1 reduces linear ubiquitination and subsequent oligomerization of the adapter protein, ASC. i.p. injection of monosodium urate crystals resulted in increased inflammatory cell infiltrates and IL-1ß production in Traf1 knockout mice compared with wild type littermates. In a model of monosodium urate crystal-induced gout, Traf1 knockout mice exhibited more swelling in the knee joints, increased infiltration of inflammatory cells, and higher expression of proinflammatory cytokines. In summary, this study identifies TRAF1 as a key regulator of IL-1ß production and a potential therapeutic target for inflammasome-driven diseases such as gout.


Asunto(s)
Gota , Inflamasomas , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales , Citocinas , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Factor 1 Asociado a Receptor de TNF/genética , Ácido Úrico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA