Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
IEEE Trans Vis Comput Graph ; 24(12): 3268-3296, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29990196

RESUMEN

This article surveys the history and current state of the art of visualization in meteorology, focusing on visualization techniques and tools used for meteorological data analysis. We examine characteristics of meteorological data and analysis tasks, describe the development of computer graphics methods for visualization in meteorology from the 1960s to today, and visit the state of the art of visualization techniques and tools in operational weather forecasting and atmospheric research. We approach the topic from both the visualization and the meteorological side, showing visualization techniques commonly used in meteorological practice, and surveying recent studies in visualization research aimed at meteorological applications. Our overview covers visualization techniques from the fields of display design, 3D visualization, flow dynamics, feature-based visualization, comparative visualization and data fusion, uncertainty and ensemble visualization, interactive visual analysis, efficient rendering, and scalability and reproducibility. We discuss demands and challenges for visualization research targeting meteorological data analysis, highlighting aspects in demonstration of benefit, interactive visual analysis, seamless visualization, ensemble visualization, 3D visualization, and technical issues.

2.
IEEE Comput Graph Appl ; 36(3): 60-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26186768

RESUMEN

The visualization of variability in surfaces embedded in 3D, which is a type of ensemble uncertainty visualization, provides a means of understanding the underlying distribution of a collection or ensemble of surfaces. This work extends the contour boxplot technique to 3D and evaluates it against an enumeration-style visualization of the ensemble members and other conventional visualizations used by atlas builders. The authors demonstrate the efficacy of using the 3D contour boxplot ensemble visualization technique to analyze shape alignment and variability in atlas construction and analysis as a real-world application.


Asunto(s)
Imagenología Tridimensional , Imagenología Tridimensional/métodos
3.
IEEE Trans Vis Comput Graph ; 20(12): 2654-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26356979

RESUMEN

In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.


Asunto(s)
Gráficos por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Estadísticos , Algoritmos , Hidrodinámica , Meteorología , Neuroimagen
4.
IEEE Trans Vis Comput Graph ; 19(12): 2713-22, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24051838

RESUMEN

Ensembles of numerical simulations are used in a variety of applications, such as meteorology or computational solid mechanics, in order to quantify the uncertainty or possible error in a model or simulation. Deriving robust statistics and visualizing the variability of an ensemble is a challenging task and is usually accomplished through direct visualization of ensemble members or by providing aggregate representations such as an average or pointwise probabilities. In many cases, the interesting quantities in a simulation are not dense fields, but are sets of features that are often represented as thresholds on physical or derived quantities. In this paper, we introduce a generalization of boxplots, called contour boxplots, for visualization and exploration of ensembles of contours or level sets of functions. Conventional boxplots have been widely used as an exploratory or communicative tool for data analysis, and they typically show the median, mean, confidence intervals, and outliers of a population. The proposed contour boxplots are a generalization of functional boxplots, which build on the notion of data depth. Data depth approximates the extent to which a particular sample is centrally located within its density function. This produces a center-outward ordering that gives rise to the statistical quantities that are essential to boxplots. Here we present a generalization of functional data depth to contours and demonstrate methods for displaying the resulting boxplots for two-dimensional simulation data in weather forecasting and computational fluid dynamics.


Asunto(s)
Algoritmos , Gráficos por Computador , Interpretación Estadística de Datos , Modelos Estadísticos , Interfaz Usuario-Computador , Simulación por Computador
5.
IEEE Trans Vis Comput Graph ; 17(12): 1832-41, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22034300

RESUMEN

We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA