Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Database (Oxford) ; 20202020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32449511

RESUMEN

Determining the molecular function of enzymes discovered by genome sequencing represents a primary foundation for understanding many aspects of biology. Historically, classification of enzyme reactions has used the enzyme nomenclature system developed to describe the overall reactions performed by biochemically characterized enzymes, irrespective of their associated sequences. In contrast, functional classification and assignment for the millions of protein sequences of unknown function now available is largely done in two computational steps, first by similarity-based assignment of newly obtained sequences to homologous groups, followed by transferring to them the known functions of similar biochemically characterized homologs. Due to the fundamental differences in their etiologies and practice, `how' these chemistry- and evolution-centric functional classification systems relate to each other has been difficult to explore on a large scale. To investigate this issue in a new way, we integrated two published ontologies that had previously described each of these classification systems independently. The resulting infrastructure was then used to compare the functional assignments obtained from each classification system for the well-studied and functionally diverse enolase superfamily. Mapping these function assignments to protein structure and reaction similarity networks shows a profound and complex disconnect between the homology- and chemistry-based classification systems. This conclusion mirrors previous observations suggesting that except for closely related sequences, facile annotation transfer from small numbers of characterized enzymes to the huge number uncharacterized homologs to which they are related is problematic. Our extension of these comparisons to large enzyme superfamilies in a computationally intelligent manner provides a foundation for new directions in protein function prediction for the huge proportion of sequences of unknown function represented in major databases. Interactive sequence, reaction, substrate and product similarity networks computed for this work for the enolase and two other superfamilies are freely available for download from the Structure Function Linkage Database Archive (http://sfld.rbvi.ucsf.edu).


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Enzimas , Enzimas/química , Enzimas/clasificación , Enzimas/fisiología , Anotación de Secuencia Molecular , Relación Estructura-Actividad
3.
Database (Oxford) ; 2017(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28365730

RESUMEN

With ever-increasing amounts of sequence data available in both the primary literature and sequence repositories, there is a bottleneck in annotating molecular function to a sequence. This article describes the biocuration process and methods used in the structure-function linkage database (SFLD) to help address some of the challenges. We discuss how the hierarchy within the SFLD allows us to infer detailed functional properties for functionally diverse enzyme superfamilies in which all members are homologous, conserve an aspect of their chemical function and have associated conserved structural features that enable the chemistry. Also presented is the Enzyme Structure-Function Ontology (ESFO), which has been designed to capture the relationships between enzyme sequence, structure and function that underlie the SFLD and is used to guide the biocuration processes within the SFLD. Database URL: http://sfld.rbvi.ucsf.edu/.


Asunto(s)
Bases de Datos de Proteínas , Enzimas/química , Enzimas/genética , Ontología de Genes , Anotación de Secuencia Molecular , Homología Estructural de Proteína , Relación Estructura-Actividad
4.
Nucleic Acids Res ; 42(Database issue): D521-30, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24271399

RESUMEN

The Structure-Function Linkage Database (SFLD, http://sfld.rbvi.ucsf.edu/) is a manually curated classification resource describing structure-function relationships for functionally diverse enzyme superfamilies. Members of such superfamilies are diverse in their overall reactions yet share a common ancestor and some conserved active site features associated with conserved functional attributes such as a partial reaction. Thus, despite their different functions, members of these superfamilies 'look alike', making them easy to misannotate. To address this complexity and enable rational transfer of functional features to unknowns only for those members for which we have sufficient functional information, we subdivide superfamily members into subgroups using sequence information, and lastly into families, sets of enzymes known to catalyze the same reaction using the same mechanistic strategy. Browsing and searching options in the SFLD provide access to all of these levels. The SFLD offers manually curated as well as automatically classified superfamily sets, both accompanied by search and download options for all hierarchical levels. Additional information includes multiple sequence alignments, tab-separated files of functional and other attributes, and sequence similarity networks. The latter provide a new and intuitively powerful way to visualize functional trends mapped to the context of sequence similarity.


Asunto(s)
Bases de Datos de Proteínas , Enzimas/química , Enzimas/clasificación , Enzimas/metabolismo , Internet , Anotación de Secuencia Molecular , Alineación de Secuencia , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...