Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 13(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887424

RESUMEN

Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-ß,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.

2.
Physiol Mol Biol Plants ; 29(5): 755-767, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37363416

RESUMEN

Plants' requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants' primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.

3.
Plants (Basel) ; 13(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38202427

RESUMEN

The family of Nuclear Distribution C (NudC) proteins plays a pivotal and evolutionarily conserved role in all eukaryotes. In animal systems, these proteins influence vital cellular processes like cell division, protein folding, nuclear migration and positioning, intracellular transport, and stress response. This review synthesizes past and current research on NudC family members, focusing on their growing importance in plants and intricate contributions to plant growth, development, and stress tolerance. Leveraging information from available genomic databases, we conducted a thorough characterization of NudC family members, utilizing phylogenetic analysis and assessing gene structure, motif organization, and conserved protein domains. Our spotlight on two Arabidopsis NudC genes, BOB1 and NMig1, underscores their indispensable roles in embryogenesis and postembryonic development, stress responses, and tolerance mechanisms. Emphasizing the chaperone activity of plant NudC family members, crucial for mitigating stress effects and enhancing plant resilience, we highlight their potential as valuable targets for enhancing crop performance. Moreover, the structural and functional conservation of NudC proteins across species suggests their potential applications in medical research, particularly in functions related to cell division, microtubule regulation, and associated pathways. Finally, we outline future research avenues centering on the exploration of under investigated functions of NudC proteins in plants.

4.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948474

RESUMEN

Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system.


Asunto(s)
Hongos/fisiología , Micorrizas/fisiología , Nicotiana/crecimiento & desarrollo , Orobanche/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Cromatografía Liquida , Citocininas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Interacciones Huésped-Patógeno , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Espectrometría de Masas , Orobanche/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Ácido Salicílico/metabolismo , Nicotiana/microbiología
5.
Plant Physiol Biochem ; 167: 999-1010, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34592706

RESUMEN

To pinpoint ethylene-mediated molecular mechanisms involved in the adaptive response to salt stress we conducted a comparative study of Arabidopsis thaliana wild type (Col-0), ethylene insensitive (ein2-1), and constitutive signaling (ctr1-1) mutant plants. Reduced germination and survival rates were observed in ein2-1 plants at increasing NaCl concentrations. By contrast, ctr1-1 mutation conferred salt stress tolerance during early vegetative development, corroborating earlier studies. Аll genotypes experienced strong stress as evidenced by the accumulation of reactive oxygen species (ROS) and increased membrane lipid peroxidation. However, the isoenzyme profiles of ROS scavenging enzymes demonstrated a higher peroxidase (POX) activity in ctr1-1 individuals under control and salt stress conditions. A markedly elevated free L-Proline (L-Pro) content was detected in the ethylene constitutive mutant. This coincided with the increased levels of Delta-1-Pyrroline-5-Carboxylate Synthase (P5CS) which is the rate-limiting enzyme from the proline biosynthetic pathway. A stabilized upregulation of a stress-induced P5CS1 splice variant was observed in the ctr1-1 background, which was not documented in the ethylene insensitive mutant ein2-1. Transcript profiling of the major SALT OVERLY SENSITIVE (SOS) pathway players (SOS1, SOS2, and SOS3) revealed altered gene expression in the organs of the ethylene signaling mutants. Overall suppressed SOS expression was observed in the ein2-1 mutants while only the SOS transcript profiles in the ctr1-1 roots were similar to the wild type. Altogether, we provide experimental evidence for ethylene-mediated molecular mechanisms implicated in the acclimation response to salt stress in Arabidopsis, which operate mainly through the regulation of free proline accumulation and enhanced ROS scavenging.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Disección , Etilenos , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas Quinasas/genética , Receptores de Superficie Celular/metabolismo , Tolerancia a la Sal/genética
6.
Plants (Basel) ; 10(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673672

RESUMEN

We explored the interplay between ethylene signals and the auxin pool in roots exposed to high salinity using Arabidopsisthaliana wild-type plants (Col-0), and the ethylene-signaling mutants ctr1-1 (constitutive) and ein2-1 (insensitive). The negative effect of salt stress was less pronounced in ctr1-1 individuals, which was concomitant with augmented auxin signaling both in the ctr1-1 controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In contrast, the ethylene-insensitive ein2-1 plants appeared depleted in active auxins. The involvement of ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for local biosynthesis (pTAR2::GUS) and polar transport (pLAX3::GUS, pAUX1::AUX1-YFP, pPIN1::PIN1-GFP, pPIN2::PIN2-GFP, pPIN3::GUS) in the mutants. The constantly operating ethylene-signaling pathway in ctr1-1 was linked to increased auxin biosynthesis. This was accompanied by a steady expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport reporters. The results imply that the ability of ctr1-1 mutant to tolerate high salinity could be related to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis and transport.

7.
Z Naturforsch C J Biosci ; 74(11-12): 319-328, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31421048

RESUMEN

Hordeum vulgare and Hordeum bulbosum are two closely related barley species, which share a common H genome. H. vulgare has two nucleolar organizer regions (NORs), while the NOR of H. bulbosum is only one. We sequenced the 2.5 kb 25S-18S region in the rDNA of H. bulbosum and compared it to the same region in H. vulgare as well as to the other Triticeae. The region includes an intergenic spacer (IGS) with a number of subrepeats, a promoter, and an external transcribed spacer (5'ETS). The IGS of H. bulbosum downstream of 25S rRNA contains two 143-bp repeats and six 128-bp repeats. In contrast, the IGS in H. vulgare contains an array of seven 79-bp repeats and a varying number of 135-bp repeats. The 135-bp repeats in H. vulgare and the 128-bp repeats in H. bulbosum show similarity. Compared to H. vulgare, the 5'ETS of H. bulbosum is shorter. Additionally, the 5'ETS regions in H. bulbosum and H. vulgare diverged faster than in other Triticeae genera. Alignment of the Triticeae promoter sequences suggests that in Hordeum, as in diploid Triticum, transcription starts with guanine and not with adenine as it is in many other plants.


Asunto(s)
ADN Ribosómico/genética , Hordeum/genética , Poaceae/genética , Emparejamiento Base/genética , Secuencia de Bases , Nucléolo Celular/genética , ADN Espaciador Ribosómico/genética , Genes de Plantas , Regiones Promotoras Genéticas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Sitio de Iniciación de la Transcripción
8.
Nat Chem Biol ; 15(6): 641-649, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31011214

RESUMEN

Clathrin-mediated endocytosis (CME) is a highly conserved and essential cellular process in eukaryotic cells, but its dynamic and vital nature makes it challenging to study using classical genetics tools. In contrast, although small molecules can acutely and reversibly perturb CME, the few chemical CME inhibitors that have been applied to plants are either ineffective or show undesirable side effects. Here, we identify the previously described endosidin9 (ES9) as an inhibitor of clathrin heavy chain (CHC) function in both Arabidopsis and human cells through affinity-based target isolation, in vitro binding studies and X-ray crystallography. Moreover, we present a chemically improved ES9 analog, ES9-17, which lacks the undesirable side effects of ES9 while retaining the ability to target CHC. ES9 and ES9-17 have expanded the chemical toolbox used to probe CHC function, and present chemical scaffolds for further design of more specific and potent CHC inhibitors across different systems.


Asunto(s)
Derivados del Benceno/farmacología , Cadenas Pesadas de Clatrina/antagonistas & inhibidores , Endocitosis/efectos de los fármacos , Arabidopsis , Derivados del Benceno/química , Cadenas Pesadas de Clatrina/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Tiofenos/farmacología
9.
Plant Cell ; 30(10): 2553-2572, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30018156

RESUMEN

The trafficking of subcellular cargos in eukaryotic cells crucially depends on vesicle budding, a process mediated by ARF-GEFs (ADP-ribosylation factor guanine nucleotide exchange factors). In plants, ARF-GEFs play essential roles in endocytosis, vacuolar trafficking, recycling, secretion, and polar trafficking. Moreover, they are important for plant development, mainly through controlling the polar subcellular localization of PIN-FORMED transporters of the plant hormone auxin. Here, using a chemical genetics screen in Arabidopsis thaliana, we identified Endosidin 4 (ES4), an inhibitor of eukaryotic ARF-GEFs. ES4 acts similarly to and synergistically with the established ARF-GEF inhibitor Brefeldin A and has broad effects on intracellular trafficking, including endocytosis, exocytosis, and vacuolar targeting. Additionally, Arabidopsis and yeast (Saccharomyces cerevisiae) mutants defective in ARF-GEF show altered sensitivity to ES4. ES4 interferes with the activation-based membrane association of the ARF1 GTPases, but not of their mutant variants that are activated independently of ARF-GEF activity. Biochemical approaches and docking simulations confirmed that ES4 specifically targets the SEC7 domain-containing ARF-GEFs. These observations collectively identify ES4 as a chemical tool enabling the study of ARF-GEF-mediated processes, including ARF-GEF-mediated plant development.


Asunto(s)
Arabidopsis/efectos de los fármacos , Cromonas/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldino A/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cromonas/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endocitosis/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Plantas Modificadas Genéticamente , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Plant Cell ; 30(10): 2573-2593, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30018157

RESUMEN

Small GTP-binding proteins from the ADP-ribosylation factor (ARF) family are important regulators of vesicle formation and cellular trafficking in all eukaryotes. ARF activation is accomplished by a protein family of guanine nucleotide exchange factors (GEFs) that contain a conserved catalytic Sec7 domain. Here, we identified and characterized Secdin, a small-molecule inhibitor of Arabidopsis thaliana ARF-GEFs. Secdin application caused aberrant retention of plasma membrane (PM) proteins in late endosomal compartments, enhanced vacuolar degradation, impaired protein recycling, and delayed secretion and endocytosis. Combined treatments with Secdin and the known ARF-GEF inhibitor Brefeldin A (BFA) prevented the BFA-induced PM stabilization of the ARF-GEF GNOM, impaired its translocation from the Golgi to the trans-Golgi network/early endosomes, and led to the formation of hybrid endomembrane compartments reminiscent of those in ARF-GEF-deficient mutants. Drug affinity-responsive target stability assays revealed that Secdin, unlike BFA, targeted all examined Arabidopsis ARF-GEFs, but that the interaction was probably not mediated by the Sec7 domain because Secdin did not interfere with the Sec7 domain-mediated ARF activation. These results show that Secdin and BFA affect their protein targets through distinct mechanisms, in turn showing the usefulness of Secdin in studies in which ARF-GEF-dependent endomembrane transport cannot be manipulated with BFA.


Asunto(s)
Arabidopsis/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Ftalazinas/farmacología , Piperazinas/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldino A/farmacología , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(8): E1906-E1915, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432171

RESUMEN

Plants largely rely on plasma membrane (PM)-resident receptor-like kinases (RLKs) to sense extracellular and intracellular stimuli and coordinate cell differentiation, growth, and immunity. Several RLKs have been shown to undergo internalization through the endocytic pathway with a poorly understood mechanism. Here, we show that endocytosis and protein abundance of the Arabidopsis brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), are regulated by plant U-box (PUB) E3 ubiquitin ligase PUB12- and PUB13-mediated ubiquitination. BR perception promotes BRI1 ubiquitination and association with PUB12 and PUB13 through phosphorylation at serine 344 residue. Loss of PUB12 and PUB13 results in reduced BRI1 ubiquitination and internalization accompanied with a prolonged BRI1 PM-residence time, indicating that ubiquitination of BRI1 by PUB12 and PUB13 is a key step in BRI1 endocytosis. Our studies provide a molecular link between BRI1 ubiquitination and internalization and reveal a unique mechanism of E3 ligase-substrate association regulated by phosphorylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Endocitosis , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Proteínas Quinasas/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
12.
J Plant Physiol ; 205: 97-104, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27649325

RESUMEN

Extensive cytosine methylation is characteristic of plant rDNA. Evidence exists, however, that the active rRNA genes are less methylated. In this work we report on the mapping of unmethylated CCGG sites in Hordeum vulgare rDNA repeats by digestion with methylation sensitive restriction enzyme HpaII and indirect end-labeling of the generated fragments. For mapping we used genomic DNA from barley deletion line with a single NOR on chromosome 5H. This NOR is more active in order to compensate for the missing NOR 6H. The enhanced NOR 5H activity in the deletion mutant is not due to higher multiplicity of the rRNA genes or, as sequencing showed, to changes in the subunit structure of the intergenic spacer. The HpaII sites in barley rDNA are heavily methylated. Nevertheless, a fraction of the rDNA repeats is hypomethylated with unmethylated CCGG sites at various positions. One unmethylated CCGG sequence is close to the transcription start site, downstream of the 135bp subrepeats. Unmethylated sites are also present in the external transcribed spacer and in the genes coding mature rRNAs. The patterns of unmethylated sites in the barley deletion line and in lines with two NORs were compared. It is hypothesized that the occurrence of unmethylated sites on a fixed subset of rDNA repeats correlates with their transcriptional activity.


Asunto(s)
ADN Ribosómico/genética , Hordeum/genética , Citosina/metabolismo , Metilación de ADN , ADN de Plantas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Eliminación de Secuencia , Sitio de Iniciación de la Transcripción
13.
Nat Commun ; 7: 11710, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271794

RESUMEN

ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.


Asunto(s)
Ácidos/metabolismo , Clatrina/metabolismo , Endocitosis/efectos de los fármacos , Mitocondrias/metabolismo , Desacopladores/farmacología , Adenosina Trifosfato/deficiencia , Adenosina Trifosfato/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efectos de los fármacos , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Quinolonas/química , Quinolonas/farmacología
14.
Plant Physiol ; 171(2): 773-87, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208282

RESUMEN

Protein aggregation is determined by short (5-15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence that self-associate in a specific manner to form ß-structured inclusions. Here, we demonstrate that the sequence specificity of APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme α-glucan water dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content, respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial traits in crops.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Zea mays/genética , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Fluorescentes Verdes , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia , Transducción de Señal , Zea mays/citología , Zea mays/metabolismo
15.
Curr Opin Plant Biol ; 22: 48-55, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25282585

RESUMEN

Chemical biology approaches have been instrumental in understanding the mode of action of brassinosteroids, a group of plant steroid hormones essential for plant development and growth. The small molecules used for such approaches include inhibitors of biosynthetic enzymes and signaling components. Additionally, recent structural data on the brassinosteroid receptor complex together with its ligand brassinolide, the most active brassinosteroid, and knowledge on its different analogs have given us a better view on the recognition of the hormone and signaling initiation. Moreover, a fluorescently labeled brassinosteroid enabled the visualization of the receptor-ligand pair in the cell. Given the insights obtained, small molecules will continue to provide new opportunities for probing brassinosteroid biosynthesis and for unraveling the dynamic and highly interconnected signaling.


Asunto(s)
Brasinoesteroides/metabolismo , Esteroides Heterocíclicos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/fisiología
16.
Chem Biol ; 20(4): 475-86, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23601636

RESUMEN

Endomembrane trafficking has a key role for ensuring homeostasis, growth and development, hormonal signaling, and adaptation of eukaryotes to the constantly changing environmental conditions. The complex organization of the endomembrane system implies the need for searching novel tools to specifically probe the regulatory components and dissect the tightly interconnected vesicle transport pathways. Here, we review the large-scale chemical genetic screens, which led to the identification of small molecules with an impact on various parts of the vesicle trafficking network. We discuss the similarities and differences in the organization of the endomembrane systems in yeasts, mammals, and plants based on studies of small molecules and their effects on trafficking hubs, routes, and conserved protein targets.


Asunto(s)
Membrana Celular/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Animales , Autofagia , Transporte Biológico , Exocitosis , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química
17.
Nat Chem Biol ; 8(6): 583-9, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22561410

RESUMEN

Receptor-mediated endocytosis is an integral part of signal transduction as it mediates signal attenuation and provides spatial and temporal dimensions to signaling events. One of the best-studied leucine-rich repeat receptor-like kinases in plants, BRASSINOSTEROID INSENSITIVE 1 (BRI1), perceives its ligand, the brassinosteroid (BR) hormone, at the cell surface and is constitutively endocytosed. However, the importance of endocytosis for BR signaling remains unclear. Here we developed a bioactive, fluorescent BR analog, Alexa Fluor 647-castasterone (AFCS), and visualized the endocytosis of BRI1-AFCS complexes in living Arabidopsis thaliana cells. Impairment of endocytosis dependent on clathrin and the guanine nucleotide exchange factor for ARF GTPases (ARF-GEF) GNOM enhanced BR signaling by retaining active BRI1-ligand complexes at the plasma membrane. Increasing the trans-Golgi network/early endosome pool of BRI1-BR complexes did not affect BR signaling. Our findings provide what is to our knowledge the first visualization of receptor-ligand complexes in plants and reveal clathrin- and ARF-GEF-dependent endocytic regulation of BR signaling from the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbocianinas/química , Membrana Celular/metabolismo , Colestanoles/metabolismo , Endocitosis , Colorantes Fluorescentes/química , Proteínas Quinasas/metabolismo , Transducción de Señal , Arabidopsis/enzimología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Brasinoesteroides/química , Brasinoesteroides/metabolismo , Membrana Celular/ultraestructura , Colestanoles/química , Relación Dosis-Respuesta a Droga , Endosomas/enzimología , Endosomas/metabolismo , Endosomas/ultraestructura , Proteínas Fluorescentes Verdes/genética , Cinética , Meristema/enzimología , Meristema/metabolismo , Meristema/ultraestructura , Microscopía Confocal , Estructura Molecular , Reguladores del Crecimiento de las Plantas , Proteínas Quinasas/genética , Transporte de Proteínas , Plantones/enzimología , Plantones/metabolismo , Plantones/ultraestructura , Vacuolas/enzimología , Vacuolas/metabolismo , Vacuolas/ultraestructura
18.
Z Naturforsch C J Biosci ; 66(3-4): 159-66, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21630590

RESUMEN

In contrast to differentiated leaves, the regulatory mechanisms of chloroplast gene expression in darkened cotyledons have not been elucidated. Although some results have been reported indicating accelerated senescence in Arabidopsis upon reillumination, the capacity of cotyledons to recover after dark stress remains unclear. We analysed the effect of two-days dark stress, applied locally or at the whole-plant level, on plastid gene expression in zucchini cotyledons. Our results showed that in the dark the overall chloroplast transcription rate was much more inhibited than the nuclear run-on transcription. While the activities of the plastid-encoded RNA polymerase (PEP) and nuclear RNA polymerase II were strongly reduced, the activities of the nuclear-encoded plastid RNA polymerase (NEP) and nuclear RNA polymerase I were less affected. During recovery upon reillumination, chloroplast transcription in the cotyledons was strongly stimulated (3-fold) compared with the naturally senescing controls, suggesting delayed senescence. Northern blot and dot blot analyses of the expression of key chloroplast-encoded photosynthetic genes showed that in contrast to psbA, which remained almost unaffected, both the transcription rate and mRNA content of psaB and rbcL were substantially decreased.


Asunto(s)
Cotiledón/metabolismo , Cucurbita/genética , Oscuridad , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Plastidios/genética , Transcripción Genética , Cartilla de ADN , Fotosíntesis/genética , ARN de Planta/genética , ARN de Planta/aislamiento & purificación
19.
J Plant Physiol ; 164(9): 1179-87, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16987568

RESUMEN

The effects of short-term darkening and methyl jasmonate (MeJA) on cotyledon senescence were studied 24h after transfer of intact 7-day-old Cucurbita pepo (zucchini) seedlings to darkness or spraying with 100 microM MeJA. The jasmonate inhibitory effect on chlorophyll content and chloroplast transcriptional activity was stronger compared with darkness. Further, MeJA reduced the photosynthetic rate whereas darkness did not affect photosynthesis. Neither stress factor affected the photochemical quantum efficiency of photosystem II (PSII) estimated by the variable fluorescence (F(v))/maximal fluorescence (F(m)) ratio, suggesting the existence of mechanisms protecting the functional activity of PSII at earlier stages of senescence, thus making this parameter more stable compared to others used to quantify senescence. Both stress factors caused a decrease in the content of physiologically active cytokinins, especially trans-zeatin (Z), with the jasmonate effect being much more pronounced when compared to darkness. Our results indicate that MeJA is a more potent inducer of senescence in zucchini cotyledons, at least within the relatively short period of the 24h treatment. This is likely due to its stronger down-regulatory effect on the levels of physiologically active cytokinins.


Asunto(s)
Acetatos/farmacología , Cotiledón/efectos de los fármacos , Cucurbita/efectos de los fármacos , Ciclopentanos/farmacología , Acetatos/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cotiledón/crecimiento & desarrollo , Cucurbita/crecimiento & desarrollo , Ciclopentanos/metabolismo , Citocininas/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Factores de Tiempo , Transcripción Genética
20.
Biophys Chem ; 109(3): 387-97, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15110936

RESUMEN

Thylakoids were used as a model system to evaluate the effect of bee venom peptide melittin (Mt) on membrane surface charge. At neutral pH, thylakoid membrane surfaces carry excess negative electrical charge. Mt strongly altered the electrophoretic mobility (EPM) of 'low-salt' thylakoids and did not significantly change the EPM of 'high-salt' thylakoids. Mt increased the primary ionic-exchange processes across the 'low-salt' thylakoid membranes, while it did not affect those of 'high-salt' thylakoids. Mt decreased the proton gradient generation on the membranes at both ionic strengths, but it affected more strongly the 'high-salt' than that of 'low-salt' thylakoids. The primary photochemical activity of photosystem II, estimated by the ratio Fv/Fm, was not influenced by the low Mt concentrations. It decreased only when chloroplasts had been incubated with higher Mt concentrations and this effect was better expressed in 'low-salt' than in 'high-salt' thylakoid membranes.


Asunto(s)
Cloroplastos/efectos de los fármacos , Meliteno/farmacología , Tensoactivos/farmacología , Tilacoides/efectos de los fármacos , Clorofila/análisis , Cloroplastos/metabolismo , Electroforesis/métodos , Concentración de Iones de Hidrógeno , Meliteno/química , Concentración Osmolar , Dispersión de Radiación , Espectrometría de Fluorescencia , Tensoactivos/química , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...