Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Mol Neurobiol ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592586

RESUMEN

Proper regulation of N-methyl-D-aspartate-type glutamate receptor (NMDA receptor) expression is responsible for excitatory synaptic functions in the mammalian brain. NMDA receptor dysfunction can cause various neuropsychiatric disorders and neurodegenerative diseases. Posttranslational protein S-palmitoylation, the covalent attachment of palmitic acid to intracellular cysteine residues via thioester bonds, occurs in the carboxyl terminus of GluN2B, which is the major regulatory NMDA receptor subunit. Mutations of three palmitoylatable cysteine residues in the membrane-proximal cluster of GluN2B to non-palmitoylatable serine (3CS) lead to the dephosphorylation of GluN2B Tyr1472 in the hippocampus and cerebral cortex, inducing a reduction in the surface expression of GluN2B-containig NMDA receptors. Furthermore, adult GluN2B 3CS homozygous mice demonstrated a definite clasping response without abnormalities in the gross brain structure, other neurological reflexes, or expression levels of synaptic proteins in the cerebrum. This behavioral disorder, observed in the GluN2B 3CS knock-in mice, indicated that complex higher brain functions are coordinated through the palmitoylation-dependent regulation of NMDA receptors in excitatory synapses.

2.
J Pharmacol Sci ; 154(3): 203-208, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395521

RESUMEN

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has attracted attention for its acute and sustained antidepressant effects in patients with depression. Hydroxynorketamine (HNK), a metabolite of ketamine, exerts antidepressant effects without exerting ketamine's side effects and has attracted much attention in recent years. However, the detailed pharmacological mechanism of action of HNK remains unclear. We previously showed that the GluN2D NMDA receptor subunit is important for sustained antidepressant-like effects of (R)-ketamine. Therefore, we investigated whether the GluN2D subunit is involved in antidepressant-like effects of (2R,6R)-HNK and (2S,6S)-HNK. Treatment with (2R,6R)-HNK but not (2S,6S)-HNK exerted acute and sustained antidepressant-like effects in the tail-suspension test in wildtype mice. Interestingly, sustained antidepressant-like effects of (2R,6R)-HNK were abolished in GluN2D-knockout mice, whereas acute antidepressant-like effects were maintained in GluN2D-knockout mice. When expression levels of GluN2A and GluN2B subunits were evaluated, a decrease in GluN2B protein expression in the nucleus accumbens was found in stressed wildtype mice but not in stressed GluN2D-knockout mice. These results suggest that the GluN2D subunit and possibly the GluN2B subunit are involved in the sustained antidepressant-like effect of (2R,6R)-HNK.


Asunto(s)
Ketamina , Ketamina/análogos & derivados , Humanos , Ratones , Animales , Ketamina/farmacología , Ketamina/metabolismo , Depresión/tratamiento farmacológico , Depresión/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones Noqueados , Antidepresivos/farmacología
3.
J Neurosci Res ; 102(1): e25257, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37814998

RESUMEN

Noncompetitive NMDA receptor (NMDAR) antagonists like phencyclidine (PCP) and ketamine cause psychosis-like symptoms in healthy humans, exacerbate schizophrenia symptoms in people with the disorder, and disrupt a range of schizophrenia-relevant behaviors in rodents, including hyperlocomotion. This is negated in mice lacking the GluN2D subunit of the NMDAR, suggesting the GluN2D subunit mediates the hyperlocomotor effects of these drugs. However, the role of GluN2D in mediating other schizophrenia-relevant NMDAR antagonist-induced behavioral disturbances, and in both sexes, is unclear. This study aimed to investigate the role of the GluN2D subunit in mediating schizophrenia-relevant behaviors induced by a range of NMDA receptor antagonists. Using both male and female GluN2D knockout (KO) mice, we examined the effects of the NMDAR antagonist's PCP, the S-ketamine enantiomer (S-ket), and the ketamine metabolite R-norketamine (R-norket) on locomotor activity, anxiety-related behavior, and recognition and short-term spatial memory. GluN2D-KO mice showed a blunted locomotor response to R-norket, S-ket, and PCP, a phenotype present in both sexes. GluN2D-KO mice of both sexes showed an anxious phenotype and S-ket, R-norket, and PCP showed anxiolytic effects that were dependent on sex and genotype. S-ket disrupted spatial recognition memory in females and novel object recognition memory in both sexes, independent of genotype. This datum identifies a role for the GluN2D subunit in sex-specific effects of NMDAR antagonists and on the differential effects of the R- and S-ket enantiomers.


Asunto(s)
Ketamina , Animales , Femenino , Humanos , Masculino , Ratones , Ketamina/farmacología , Fenciclidina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Reconocimiento en Psicología
4.
Neuropsychopharmacology ; 47(12): 2150-2159, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35618841

RESUMEN

Long-lasting fear-related disorders depend on the excessive retention of traumatic fear memory. We previously showed that the palmitoylation-dependent removal of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors prevents hyperexcitation-based epileptic seizures and that AMPA receptor palmitoylation maintains neural network stability. In this study, AMPA receptor subunit GluA1 C-terminal palmitoylation-deficient (GluA1C811S) mice were subjected to comprehensive behavioral battery tests to further examine whether the mutation causes other neuropsychiatric disease-like symptoms. The behavioral analyses revealed that palmitoylation-deficiency in GluA1 is responsible for characteristic prolonged contextual fear memory formation, whereas GluA1C811S mice showed no impairment of anxiety-like behaviors at the basal state. In addition, fear generalization gradually increased in these mutant mice without affecting their cued fear. Furthermore, fear extinction training by repeated exposure of mice to conditioned stimuli had little effect on GluA1C811S mice, which is in line with augmentation of synaptic transmission in pyramidal neurons in the basolateral amygdala. In contrast, locomotion, sociability, depression-related behaviors, and spatial learning and memory were unaffected by the GluA1 non-palmitoylation mutation. These results indicate that impairment of AMPA receptor palmitoylation specifically causes posttraumatic stress disorder (PTSD)-like symptoms.


Asunto(s)
Miedo , Receptores AMPA , Animales , Extinción Psicológica , Miedo/fisiología , Ratones , Propionatos , Receptores AMPA/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
5.
Cell Rep ; 39(1): 110624, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385735

RESUMEN

Neurexins (NRXNs) are key presynaptic cell adhesion molecules that regulate synapse formation and function via trans-synaptic interaction with postsynaptic ligands. Here, we generate cerebellar granule cell (CGC)-specific Nrxn triple-knockout (TKO) mice for complete deletion of all NRXNs. Unexpectedly, most CGCs die in these mice, and this requirement for NRXNs for cell survival is reproduced in cultured CGCs. The axons of cultured Nrxn TKO CGCs that are not in contact with a postsynaptic structure show defects in the formation of presynaptic protein clusters and in action-potential-induced Ca2+ influxes. These cells also show impaired secretion of depolarization-induced, fluorescence-tagged brain-derived neurotrophic factor (BDNF) from their axons, and the cell-survival defect is rescued by the application of BDNF. These results suggest that CGC survival is maintained by autocrine neurotrophic factors and that NRXNs organize the presynaptic protein clusters and the autocrine neurotrophic-factor secretory machinery independent of contact with postsynaptic ligands.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuronas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Supervivencia Celular , Células Cultivadas , Cerebelo/metabolismo , Ligandos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Sinapsis/metabolismo
6.
Mol Brain ; 14(1): 174, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876180

RESUMEN

Ketamine, a non-competitive antagonist of the N-methyl-D-aspartate receptor (NMDAR), generates a rapidly-acting antidepressant effect. It exerts psychomimetic effects, yet demands a further investigation of its mechanism. Previous research showed that ketamine did no longer promote hyperlocomotion in GluN2D knockout (KO) mice, which is a subunit of NMDAR. In the present study, we tested whether GluN2D-containing NMDARs participate in the physiological changes in the medial prefrontal cortex (mPFC) triggered by ketamine. Sub-anesthetic dose of ketamine (25 mg/kg) elevated the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in wild-type (WT) mice, but not in GluN2D KO mice, 1 h after the injection. The amplitude of sEPSC and paired-pulse ratio (PPR) were unaltered by ketamine in both WT and GluN2D KO mice. These findings suggest that GluN2D-containing NMDARs might play a role in the ketamine-mediated changes in glutamatergic neurons in mPFC and, presumably, in ketamine-induced hyperlocomotion.


Asunto(s)
Ketamina , Animales , Potenciales Postsinápticos Excitadores , Ketamina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Nat Commun ; 12(1): 1848, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758193

RESUMEN

Neuroligin 3 (NLGN3) and neurexins (NRXNs) constitute a canonical transsynaptic cell-adhesion pair, which has been implicated in autism. In autism spectrum disorder (ASD) development of sociality can be impaired. However, the molecular mechanism underlying NLGN3-mediated social development is unclear. Here, we identify non-canonical interactions between NLGN3 and protein tyrosine phosphatase δ (PTPδ) splice variants, competing with NRXN binding. NLGN3-PTPδ complex structure revealed a splicing-dependent interaction mode and competition mechanism between PTPδ and NRXNs. Mice carrying a NLGN3 mutation that selectively impairs NLGN3-NRXN interaction show increased sociability, whereas mice where the NLGN3-PTPδ interaction is impaired exhibit impaired social behavior and enhanced motor learning, with imbalance in excitatory/inhibitory synaptic protein expressions, as reported in the Nlgn3 R451C autism model. At neuronal level, the autism-related Nlgn3 R451C mutation causes selective impairment in the non-canonical pathway. Our findings suggest that canonical and non-canonical NLGN3 pathways compete and regulate the development of sociality.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Secuencia de Aminoácidos , Animales , Trastorno del Espectro Autista/metabolismo , Escala de Evaluación de la Conducta , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/genética , Dominios Proteicos , Empalme de Proteína , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Recombinantes , Transducción de Señal/genética , Transducción de Señal/fisiología , Conducta Social , Sinapsis/genética
8.
Int J Neuropsychopharmacol ; 22(7): 449-452, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31135879

RESUMEN

Although the N-methyl-D-aspartate receptor antagonist ketamine has attracted attention because of its rapid and sustained antidepressant effects in depressed patients, its side effects have raised some concerns. Ketamine is a racemic mixture of equal amounts of the enantiomers (R)-ketamine and (S)-ketamine. The neural mechanisms that underlie the differential effects of these enantiomers remain unclear. We investigated cognitive impairment that was induced by ketamine and its enantiomers in N-methyl-D-aspartate GluN2D receptor subunit knockout (GluN2D-KO) mice. In the novel object recognition test, (RS)-ketamine and (S)-ketamine caused cognitive impairment in both wild-type and GluN2D-KO mice, whereas (R)-ketamine induced such cognitive impairment only in wild-type mice. The present results suggest that the GluN2D subunit plays an important role in cognitive impairment that is induced by (R)-ketamine, whereas this subunit does not appear to be involved in cognitive impairment that is induced by (RS)-ketamine or (S)-ketamine.


Asunto(s)
Antidepresivos/efectos adversos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Ketamina/efectos adversos , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Antidepresivos/química , Antidepresivos/farmacología , Ketamina/química , Ketamina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/genética , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología
9.
Neuropsychopharmacol Rep ; 39(1): 61-66, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30536651

RESUMEN

BACKGROUND: AMPA receptors predominantly mediate fast excitatory synaptic transmission in the mammalian brain. Post-translational protein S-palmitoylation of AMPA receptor GluA subunits at their C-termini reversibly controls the receptors trafficking to and from excitatory glutamatergic synapses. Excitatory inputs to neurons induce the expression of immediate early genes (IEGs), including Arc, with particular spatial patterns. In the hippocampal dentate gyrus, Arc is mainly expressed in the upper (dorsal) blade at the basal state. GluA1 C-terminal palmitoylation-deficient (GluA1C811S) mice showed enhanced seizure susceptibility and disturbed synaptic plasticity without impaired gross anatomy or basal synaptic transmission. These mutant mice also exhibited an increased expression of IEG products, c-Fos and Arc proteins, in the hippocampus and cerebral cortex. In this report, we further analyzed excitability and Arc expression pattern in the dentate gyrus of GluA1C811S mice. METHODS AND RESULTS: Electrophysiological analysis of granule neurons to measure the evoked excitatory postsynaptic current/evoked inhibitory postsynaptic current ratio revealed that excitatory/inhibitory (E/I) balance was normal in GluA1C811S mice. In contrast, immunohistochemical staining showed an abnormal distribution of Arc-positive cells between upper and lower (ventral) blades of the dentate gyrus in these mutant mice. These data suggest that deficiency of GluA1 palmitoylation causes perturbed neuronal inputs from the entorhinal cortex to the dentate gyrus, which potentially underlies the excessive excitability in response to seizure-inducing stimulation. CONCLUSION: Our findings conclude that an appropriate regulation of Arc expression in the dentate gyrus, ensured by AMPA receptor palmitoylation, may be critical for stabilizing hippocampal neural circuits and may suppress excess excitation.


Asunto(s)
Proteínas del Citoesqueleto/genética , Giro Dentado/metabolismo , Genes Inmediatos-Precoces , Mutación Missense , Proteínas del Tejido Nervioso/genética , Receptores AMPA/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Giro Dentado/citología , Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Lipoilación , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Dominios Proteicos , Receptores AMPA/química , Receptores AMPA/genética
10.
Neuropharmacology ; 148: 107-116, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30590060

RESUMEN

The impairment of social behaviors induced by social defeat stress exposure as juveniles is resistant to some antidepressants and an antipsychotic, although the underlying mechanisms and/or therapeutic target are not yet clear. In this study, we investigated the involvement of the glutamatergic neuronal system in the impairment of social behaviors in this model, as this system is known to be involved in many central pathologies. Acute administration of ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist and subsequent stimulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, attenuated the expression of impairment of social behaviors. Lack of the NMDA receptor GluN2A subunit or acute administration of ifenprodil, an NMDA receptor GluN2B subunit antagonist, did not cause an effect. There were no significant changes in NMDA function, as determined by the ratios of phosphorylated NMDA receptor subunits in the prefrontal cortex and hippocampus. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione, a selective AMPA receptor antagonist, prevented the effect of ketamine on the expression of impairment of social behaviors. On the contrary, the ratio of phosphorylated AMPA receptor GluA1 subunit in the hippocampus was significantly increased in the non-tested, defeated group. Ketamine increased the level of total protein, but not the ratio of phosphorylated GluA1 in the hippocampus of the non-tested, defeated group. In conclusion, exposure to social defeat stress as juveniles may induce the expression of impairment of social behaviors in adolescents via functional changes in GluA1. Activators of AMPA receptor signaling, such as ketamine, may constitute a novel treatment strategy for stress-related psychiatric disorders in adolescents with adverse juvenile experiences.


Asunto(s)
Ketamina/farmacología , Receptores AMPA/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Conducta Social , Factores de Edad , Animales , Hipocampo/metabolismo , Ketamina/antagonistas & inhibidores , Masculino , Ratones , Piperidinas/farmacología , Corteza Prefrontal/metabolismo , Quinoxalinas/farmacología , Receptores AMPA/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Estrés Psicológico/psicología
11.
Front Cell Neurosci ; 12: 354, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364232

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are ubiquitously expressed in the mammalian brain and are essential for neuronal development, survival and plasticity. GluN2 subunit composition has a profound effect on the properties of NMDARs. In substantia nigra dopaminergic (SNc-DA) neurons, pharmacological experiments suggest that the relatively rare GluN2D subunits form functional synaptic and extrasynaptic NMDARs. Given the importance of establishing this point, mice lacking the GluN2D subunit (Grin2D-null) were used in this study to further explore the contribution of the GluN2D subunit to NMDAR responses. Significantly less DQP-1105-sensitive NMDAR-EPSC and significantly more ifenprodil-sensitive NMDAR-EPSC was observed in SNc-DA neurons from Grin2D-null mice, indicating that in these animals a small population of synaptic GluN2D subunits is replaced with GluN2B. Significantly larger currents were seen in response to higher concentrations (1-10 mM) of NMDA in SNc-DA neurons from Grin2D-null mice, as well as significantly more desensitization: these data are consistent with the presence of GluN2D-containing whole-cell NMDARs in SNc-DA neurons, with low conductance and little desensitization. Brief applications of NMDA evoked responses that were significantly less sensitive to DQP-1105 in slices from Grin2D-null mice. Tonic NMDAR activity in response to ambient extracellular glutamate, determined by the sensitivity of tonic current to D-AP5 (50 µM), was significantly less in SNc-DA neurons from Grin2D-null mice. In the presence of the glutamate transporter blocker TBOA (30 µM), the D-AP5-sensitive current was also significantly less in Grin2D-null mice. Taken together, these data support the evidence for GluN2D subunit expression in functional NMDARs at both synaptic and extrasynaptic locations in SNc-DA neurons.

12.
J Neurosci ; 38(47): 10220-10235, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30355633

RESUMEN

Synaptic AMPAR expression controls the strength of excitatory synaptic transmission and plasticity. An excess of synaptic AMPARs leads to epilepsy in response to seizure-inducible stimulation. The appropriate regulation of AMPARs plays a crucial role in the maintenance of the excitatory/inhibitory synaptic balance; however, the detailed mechanisms underlying epilepsy remain unclear. Our previous studies have revealed that a key modification of AMPAR trafficking to and from postsynaptic membranes is the reversible, posttranslational S-palmitoylation at the C-termini of receptors. To clarify the role of palmitoylation-dependent regulation of AMPARs in vivo, we generated GluA1 palmitoylation-deficient (Cys811 to Ser substitution) knock-in mice. These mutant male mice showed elevated seizure susceptibility and seizure-induced neuronal activity without impairments in synaptic transmission, gross brain structure, or behavior at the basal level. Disruption of the palmitoylation site was accompanied by upregulated GluA1 phosphorylation at Ser831, but not at Ser845, in the hippocampus and increased GluA1 protein expression in the cortex. Furthermore, GluA1 palmitoylation suppressed excessive spine enlargement above a certain size after LTP. Our findings indicate that an abnormality in GluA1 palmitoylation can lead to hyperexcitability in the cerebrum, which negatively affects the maintenance of network stability, resulting in epileptic seizures.SIGNIFICANCE STATEMENT AMPARs predominantly mediate excitatory synaptic transmission. AMPARs are regulated in a posttranslational, palmitoylation-dependent manner in excitatory synapses of the mammalian brain. Reversible palmitoylation dynamically controls synaptic expression and intracellular trafficking of the receptors. Here, we generated GluA1 palmitoylation-deficient knock-in mice to clarify the role of AMPAR palmitoylation in vivo We showed that an abnormality in GluA1 palmitoylation led to hyperexcitability, resulting in epileptic seizure. This is the first identification of a specific palmitoylated protein critical for the seizure-suppressing process. Our data also provide insight into how predicted receptors such as AMPARs can effectively preserve network stability in the brain. Furthermore, these findings help to define novel key targets for developing anti-epileptic drugs.


Asunto(s)
Hipocampo/metabolismo , Hipocampo/fisiopatología , Palmitatos/metabolismo , Receptores AMPA/deficiencia , Convulsiones/metabolismo , Convulsiones/fisiopatología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Receptores AMPA/genética , Convulsiones/genética
13.
Cell Rep ; 24(1): 95-106.e9, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29972794

RESUMEN

Dendritic filopodia of developing neurons function as environmental sensors, regulating the spatial organization of dendrites and proper targeting to presynaptic partners. Dendritic filopodia morphology is determined by the balance of F-actin assembled via two major nucleating pathways, the ARP2/3 complex and formins. The inverse-BAR protein MTSS1 is highly expressed in Purkinje cells (PCs) and has been shown to upregulate ARP2/3 activity. PCs in MTSS1 conditional knockout mice showed dendrite hypoplasia due to excessive contact-induced retraction during development. This phenotype was concomitant with elongated dendritic filopodia and was phenocopied by overactivation of the actin nucleator formin DAAM1 localized in the tips of PC dendritic protrusions. Cell biology assays including single-molecule speckle microscopy demonstrated that MTSS1's C terminus binds to DAAM1 and paused DAAM1-mediated F-actin polymerization. Thus, MTSS1 plays a dual role as a formin inhibitor and ARP2/3 activator in dendritic filopodia, determining final neuronal morphology.


Asunto(s)
Dendritas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Seudópodos/metabolismo , Células de Purkinje/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Animales , Espinas Dendríticas/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/deficiencia , Células 3T3 NIH , Proteínas de Neoplasias/deficiencia , Unión Proteica
14.
Behav Brain Res ; 353: 124-128, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29953905

RESUMEN

The N-methyl-D-aspartate receptor (NMDAR) is mechanistically involved in the behavioral and neurophysiological effects of alcohol, but the specific role of the GluN2A subunit remains unclear. Here, we exposed mice with constitutive GluN2A gene knockout (KO) to chronic intermittent ethanol vapor (CIE) and tested for EtOH consumption/preference using a two-bottle choice paradigm, as well as NMDAR-mediated transmission at basolateral amygdala synapses via ex vivo slice electrophysiology. Results showed that GluN2A KO mice attained comparable blood EtOH levels in response to CIE exposure, but did not exhibit the significant increase in EtOH drinking that was observed in CIE-exposed wildtypes. GluN2A KO mice also showed no alterations in BLA NMDAR-mediated synaptic transmission after CIE, relative to air-exposed, whereas C57BL/6 J mice showed an attenuated synaptic response to GluN2B antagonism. Taken together, these data add to mounting evidence supporting GluN2A-containing NMDARs as a mechanism underlying relative risk for developing EtOH dependence after repeated EtOH exposure.


Asunto(s)
Alcoholismo/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Consumo de Bebidas Alcohólicas/metabolismo , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Conducta de Elección/fisiología , Etanol/administración & dosificación , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenoles/farmacología , Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
15.
J Pharmacol Sci ; 135(3): 138-140, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29174627

RESUMEN

We investigated the rapid and sustained antidepressant effects of enantiomers of ketamine in N-methyl-d-aspartate (NMDA) receptor GluN2D subunit knockout (GluN2D-KO) mice. Intraperitoneal administration of ketamine or its enantiomers 10 min before the tail-suspension test exerted significant antidepressant effects on restraint stress-induced depression in both wildtype and GluN2D-KO mice. The antidepressant effects of (RS)-ketamine and (S)-ketamine were sustained 96 h after the injection in both wildtype and GluN2D-KO mice, but such sustained antidepressant effects of (R)-ketamine were only observed in wildtype mice. These data suggest that the GluN2D subunit is critical for the sustained antidepressant effects of (R)-ketamine.


Asunto(s)
Antidepresivos/farmacología , Ketamina/farmacología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Antidepresivos/administración & dosificación , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Inyecciones Intraperitoneales , Ketamina/administración & dosificación , Ketamina/uso terapéutico , Ratones Endogámicos C57BL , Estereoisomerismo
16.
Neuropharmacology ; 112(Pt A): 188-197, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27480795

RESUMEN

The N-methyl-d-aspartate (NMDA) receptor channel is involved in various physiological functions, including learning and memory. The GluN2D subunit of the NMDA receptor has low expression in the mature brain, and its role is not fully understood. In the present study, the effects of GluN2D subunit deficiency on emotional and cognitive function were investigated in GluN2D knockout (KO) mice. We found a reduction of motility (i.e., a depressive-like state) in the tail suspension test and a reduction of sucrose preference (i.e., an anhedonic state) in GluN2D KO mice that were group-housed with littermates. Despite apparently normal olfactory function and social interaction, GluN2D KO mice exhibited a decrease in preference for social novelty, suggesting a deficit in social recognition or memory. Golgi-Cox staining revealed a reduction of the complexity of dendritic trees in the accessory olfactory bulb in GluN2D KO mice, suggesting a deficit in pheromone processing pathway activation, which modulates social recognition. The deficit in social recognition may result in social stress in GluN2D KO mice. Isolation housing is a procedure that has been shown to reduce stress in mice. Interestingly, 3-week isolation and treatment with agomelatine or the 5-hydroxytryptamine-2C (5-HT2C) receptor antagonist SB242084 reversed the anhedonic-like state in GluN2D KO mice. In contrast, treatment with the 5-HT2C receptor agonist CP809101 induced depressive- and anhedonic-like states in isolated GluN2D KO mice. These results suggest that social stress that is caused by a deficit in social recognition desensitizes 5-HT2c receptors, followed by an anhedonic- and depressive-like state, in GluN2D KO mice. The GluN2D subunit of the NMDA receptor appears to be important for the recognition of individuals and development of normal emotionality in mice. 5-HT2C receptor antagonism may be a therapeutic target for treating social stress-induced anhedonia. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.


Asunto(s)
Anhedonia/fisiología , Receptor de Serotonina 5-HT2C/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Reconocimiento en Psicología/fisiología , Conducta Social , Estrés Psicológico/fisiopatología , Acetamidas/farmacología , Aminopiridinas/farmacología , Animales , Dendritas/patología , Indoles/farmacología , Ratones , Ratones Noqueados , Bulbo Olfatorio/patología , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Receptores de N-Metil-D-Aspartato/genética , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Aislamiento Social
17.
Sci Rep ; 6: 34196, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27677249

RESUMEN

Neuronal plasticity is especially active in the young, during short windows of time termed critical periods, and loss of a critical period leads to functional limitations in the adults. The mechanism that governs the length of critical periods remains unknown. Here we show that levels of the NMDA receptor GluN2B subunit, which functions as a Ca2+ channel, declines in spinal cord synapses toward the end of the critical period for activity-dependent corticospinal synapse elimination. This period could be prolonged by blocking the decline of GluN2B, and after its termination the critical period could be reopened through upregulation of GluN2B. It is known that inhibitory neural activity increases with development in the CNS including the spinal cord. Suppression of the increasing inhibitory activity using low-dose strychnine also prolonged this critical period. During the strychnine-widened time window, Ca2+ influx through GluN2B channels returned to a level comparable to that seen during the critical period, though the level of GluN2B was slightly reduced. These findings indicate that loss of GluN2B subunits and the associated reduction in Ca2+ influx determines the end of the critical period in our in vitro CS system.

18.
Mob Genet Elements ; 6(4): e1211980, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27583186

RESUMEN

BACKGROUND: Retrotransposition of long interspersed nuclear element-1 (L1-RTP) is proposed to contribute to central nervous system (CNS) plasticity by inducing mosaicism of neuronal cells. Clinical studies have identified increased L1 copy numbers in the brains of patients with psychiatric disorders. These observations implicate that L1-RTP is important for neurogenesis and that its deregulation represents a risk factor for mental disorders. However, no supportive evidence is available for understanding the importance of L1-RTP in CNS function. FINDINGS: To explore the physiological role of L1-RTP in CNS, we examined the L1 copy number during maturation. Interestingly, the L1 copy number increased after birth in the mouse hippocampus, but not the frontal lobe, with maximal copy numbers found in 8-week-old mice. This age-dependent L1 increase was abolished by administration of a reverse-transcriptase inhibitor, stavudine (d4T), which showed no toxic effects. Notably, the age-dependent L1 increase was attenuated by post-weaning social isolation (SI) stress, a well-known intervention for inducing psychiatric disorders in mice, or deletion of the NR2A gene that encodes a subunit of the glutamate receptor. Moreover, the negative effects of SI stress on L1-RTP were partially restored by environmental enrichment with voluntary running, but not by fluoxetine, a commonly used anti-psychiatric drug. Finally, behavioral experiments revealed that learning memory was defective in d4T-treated mice, which was similarly observed in mice raised under SI stress. CONCLUSION: We detected the modulation of L1-RTP in the hippocampus during maturation of the CNS. In a recent study, we demonstrated that stimulants such as methamphetamine and cocaine were active in the induction of L1-RTP in neuronal cells, and previous studies have shown that NR2A-deficient mice are susceptible to mental abnormality. Herein, our data support the notion that the age-dependent modulation of L1-RTP is involved in genome differentiation in the hippocampus, and that modulation defects are linked to the development of psychiatric disorders.

19.
Neuron ; 89(2): 337-50, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26774161

RESUMEN

Spontaneous bursts of activity in developing sensory pathways promote maturation of neurons, refinement of neuronal connections, and assembly of appropriate functional networks. In the developing auditory system, inner hair cells (IHCs) spontaneously fire Ca(2+) spikes, each of which is transformed into a mini-burst of action potentials in spiral ganglion neurons (SGNs). Here we show that NMDARs are expressed in SGN dendritic terminals and play a critical role during transmission of activity from IHCs to SGNs before hearing onset. NMDAR activation enhances glutamate-mediated Ca(2+) influx at dendritic terminals, promotes repetitive firing of individual SGNs in response to each synaptic event, and enhances coincident activity of neighboring SGNs that will eventually encode similar frequencies of sound. Loss of NMDAR signaling from SGNs reduced their survival both in vivo and in vitro, revealing that spontaneous activity in the prehearing cochlea promotes maturation of auditory circuitry through periodic activation of NMDARs in SGNs.


Asunto(s)
Potenciales de Acción/fisiología , Supervivencia Celular/fisiología , Cóclea/crecimiento & desarrollo , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Animales Recién Nacidos , Cóclea/citología , Ratones , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/fisiología
20.
Neurosci Lett ; 610: 48-53, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26520463

RESUMEN

The present study aimed to investigate the involvement of the NMDA receptor (NMDAR) and/or nitric oxide (NO) pathway in ketamine-induced behavioral sensitization. Mice received repeated subcutaneous administration of ketamine (25mg/kg), once daily or once weekly for a total of five doses. Even three administrations of ketamine, daily or weekly, induced a rapid increase in locomotor activity in wild-type (WT), but not in GluN2D knockout (GluN2D-KO) mice. Furthermore, for WT mice receiving daily ketamine, elevated locomotor activity was maintained after a 1-month withdrawal period; however, this was not the case when ketamine was administered weekly. The effect of acute ketamine on nNOS activities was estimated with nicotinamide adenine dinucleotide hydrogen phosphate-diaphorase (NADPH-d) histochemistry. Ketamine rapidly increased the number of NADPH-d activated cells and strongly stained dendrites in the dorsal striatum and prefrontal cortex of WT mice, but not GluN2D-KO mice. These results suggest that ketamine-induced locomotor sensitization and nNOS activation in the frontal cortex-striatum neuronal circuit are positively correlated and that the NMDAR GluN2D subunit plays an important role in the acquisition and maintenance of ketamine-induced behavioral sensitization.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Ketamina/farmacología , Actividad Motora/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/metabolismo , Corteza Prefrontal/efectos de los fármacos , Psicotrópicos/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Cuerpo Estriado/metabolismo , Activación Enzimática , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , NADP/metabolismo , Neuronas/metabolismo , Óxido Nítrico/biosíntesis , Especificidad de Órganos , Corteza Prefrontal/metabolismo , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...