Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037752

RESUMEN

Plasmodium sporozoites invade hepatocytes, transform into liver stages, and replicate into thousands of merozoites that infect erythrocytes and cause malaria. Proteins secreted from micronemes play an essential role in hepatocyte invasion, and unneeded micronemes are subsequently discarded for replication. The liver-stage parasites are potent immunogens that prevent malarial infection. Late liver stage-arresting genetically attenuated parasites (GAPs) exhibit greater protective efficacy than early GAP. However, the number of late liver-stage GAPs for generating GAPs with multiple gene deletions is limited. Here, we identified Scot1 (Sporozoite Conserved Orthologous Transcript 1), which was previously shown to be upregulated in sporozoites, and by endogenous tagging with mCherry, we demonstrated that it is expressed in the sporozoite and liver stages in micronemes. Using targeted gene deletion in Plasmodium berghei, we showed that Scot1 is essential for late liver-stage development. Scot1 KO sporozoites grew normally into liver stages but failed to initiate blood-stage infection in mice due to impaired apicoplast biogenesis and merozoite formation. Bioinformatic studies suggested that Scot1 is a metal-small-molecule carrier protein. Remarkably, supplementation with metals in the culture of infected Scot1 KO cells did not rescue their phenotype. Immunization with Scot1 KO sporozoites in C57BL/6 mice confers protection against malaria via infection. These proof-of-concept studies will enable the generation of P. falciparum Scot1 mutants that could be exploited to generate GAP malaria vaccines.

2.
Mol Microbiol ; 121(5): 940-953, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38419272

RESUMEN

Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.


Asunto(s)
Hígado , Malaria , Merozoítos , Biogénesis de Organelos , Plasmodium berghei , Esporozoítos , Estearoil-CoA Desaturasa , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/metabolismo , Plasmodium berghei/enzimología , Animales , Ratones , Hígado/parasitología , Merozoítos/crecimiento & desarrollo , Merozoítos/metabolismo , Malaria/parasitología , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Anopheles/parasitología , Femenino , Retículo Endoplásmico/metabolismo
3.
Cell Mol Life Sci ; 80(11): 344, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910326

RESUMEN

During macroautophagy, the Atg8 protein is conjugated to phosphatidylethanolamine (PE) in autophagic membranes. In Apicomplexan parasites, two cysteine proteases, Atg4 and ovarian tumor unit (Otu), have been identified to delipidate Atg8 to release this protein from membranes. Here, we investigated the role of cysteine proteases in Atg8 conjugation and deconjugation and found that the Plasmodium parasite consists of both activities. We successfully disrupted the genes individually; however, simultaneously, they were refractory to deletion and essential for parasite survival. Mutants lacking Atg4 and Otu showed normal blood and mosquito stage development. All mice infected with Otu KO sporozoites became patent; however, Atg4 KO sporozoites either failed to establish blood infection or showed delayed patency. Through in vitro and in vivo analysis, we found that Atg4 KO sporozoites invade and normally develop into early liver stages. However, nuclear and organelle differentiation was severely hampered during late stages and failed to mature into hepatic merozoites. We found a higher level of Atg8 in Atg4 KO parasites, and the deconjugation of Atg8 was hampered. We confirmed Otu localization on the apicoplast; however, parasites lacking Otu showed no visible developmental defects. Our data suggest that Atg4 is the primary deconjugating enzyme and that Otu cannot replace its function completely because it cleaves the peptide bond at the N-terminal side of glycine, thereby irreversibly inactivating Atg8 during its recycling. These findings highlight a role for the Atg8 deconjugation pathway in organelle biogenesis and maintenance of the homeostatic cellular balance.


Asunto(s)
Proteasas de Cisteína , Malaria , Parásitos , Animales , Ratones , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Parásitos/metabolismo , Plasmodium berghei , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Protozoarias/metabolismo
4.
Mol Microbiol ; 113(2): 478-491, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31755154

RESUMEN

Upon entering its mammalian host, the malaria parasite productively invades two distinct cell types, that is, hepatocytes and erythrocytes during which several adhesins/invasins are thought to be involved. Many surface-located proteins containing thrombospondin Type I repeat (TSR) which help establish host-parasite molecular crosstalk have been shown to be essential for mammalian infection. Previous reports indicated that antibodies produced against Plasmodium falciparum secreted protein with altered thrombospondin repeat (SPATR) block hepatocyte invasion by sporozoites but no genetic evidence of its contribution to invasion has been reported. After failing to generate Spatr knockout in Plasmodium berghei blood stages, a conditional mutagenesis system was employed. Here, we show that SPATR plays an essential role during parasite's blood stages. Mutant salivary gland sporozoites exhibit normal motility, hepatocyte invasion, liver stage development and rupture of the parasitophorous vacuole membrane resulting in merosome formation. But these mutant hepatic merozoites failed to establish a blood stage infection in vivo. We provide direct evidence that SPATR is not required for hepatocyte invasion but plays an essential role during the blood stages of P. berghei.


Asunto(s)
Plasmodium berghei , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo , Trombospondinas/metabolismo , Animales , Eritrocitos/parasitología , Técnicas de Inactivación de Genes , Hepatocitos/parasitología , Interacciones Huésped-Parásitos , Malaria/parasitología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Merozoítos/metabolismo , Filogenia , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Protozoarias/genética , Trombospondinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA