Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 128(13): 2565-2573, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38513220

RESUMEN

In the present work, the photoinduced charge-transfer (CT) behavior of 7-phenyl-6H-pyrido[1,2-a:3,4-b']diindole-6,13(12H)-dione (HCB) as a function of solvent polarity is reported by UV-vis absorption, steady-state and time-resolved fluorescence, and quantum chemical calculations. Calculated excited state energies of HCB at the B3PW91/6-31+G* level in vacuo and in solvents fulfill the energy requirements for singlet fission, which is the most promising path for the generation of highly efficient solar cells. The calculated potential energy curve for the compound reveals that the keto form is the predominant form in the ground state. Large bathochromic shifts in fluorescence with decreasing trends of quantum yield and lifetime indicate the occurrence of intramolecular CT from the indole bicycle to the indolinone moiety of HCB in highly polar solvents. The observed quenching of HCB fluorescence in different solvents without altering the spectral shape upon addition of a donor, triethylamine, is attributed to intermolecular CT, and it was examined in terms of the Stern-Volmer kinetics. The thermodynamics of photoinduced CT processes in HCB was analyzed using the measured photophysical data and cyclic voltammetric redox potentials via the Rehm-Weller equation. Analyses with the semiclassical Marcus theory suggest that both the CT processes fall under the Marcus normal region.

2.
Sci Rep ; 13(1): 21221, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040827

RESUMEN

The exploration of multicolor emitting phosphors with single phase is extremely important for n-UV chip excited LED/WLED's and multicolor display devices. In this paper, Dy3+, Ho3+ singly doped and Dy3+/Ho3+ co-doped CaTiO3 phosphor materials have been synthesized by solid state reaction method at 1473 K. The synthesized materials were characterized by XRD, FE-SEM, EDX, FTIR, PL and lifetime measurements. The PL emission spectra of Dy3+ doped CaTiO3 phosphors give intense blue and yellow emissions under UV excitation, while the PL emission spectra of Ho3+ doped CaTiO3 phosphor show intense green emission under UV/blue excitations. Further, to get the multicolor emission including white light, Dy3+ and Ho3+ were co-doped simultaneously in CaTiO3 host. It is found that alongwith colored and white light emissions, it also shows energy transfer from Dy3+ to Ho3+ with 367 nm and from Ho3+ to Dy3+ under 362 nm excitations. The energy transfer efficiency is found to be 67.76% and 69.39% for CaTiO3:4Dy3+/3Ho3+ and CaTiO3:3Ho3+/5Dy3+ phosphors, respectively. The CIE color coordinates, CCT and color purity of the phosphors have been calculated, which show color tunability from whitish to deep green via greenish yellow color. The lifetime of 4F9/2 level of Dy3+ ion and 5S2 level of Ho3+ ion is decreased in presence of Ho3+ and Dy3+ ions, respectively. This is due to energy transfer from Dy3+ to Ho3+ ions and vice versa. A temperature dependent photoluminescence studied of CaTiO3:4Dy3+/2Ho3+ phosphor show a high thermal stability (82% at 423 K of initial temperature 303 K) in the temperature range 303-483 K with activation energy 0.17 eV. The PLQY are 30%, 33% and 35% for CaTiO3:4Dy3+, CaTiO3:4Dy3+/2Ho3+ and CaTiO3:3Ho3+ phosphors, respectively. Hence, Dy3+, Ho3+ singly doped and Dy3+/Ho3+ co-doped CaTiO3 phosphor materials can be used in the field of single matrix perovskite color tunable phosphors which may be used in multicolor display devices, n-UV chip excited LED/WLED's and photodynamic therapy for the cancer treatment.

3.
RSC Adv ; 13(33): 22663-22674, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37502827

RESUMEN

In this work, Sm3+-doped and Sm3+/Li+/K+/Mg2+/Ba2+/Gd3+/Bi3+ co-doped CaTiO3 phosphors were synthesized by a solid-state reaction method at 1473 K. The phase of phosphors was identified to be orthorhombic with space group Pnma (62) by XRD measurements. The morphological properties of the prepared samples were studied by SEM measurements. The average crystallite and particle sizes were found to increase in the presence of modifiers and they follow the trend Li+ > Mg2+ > Gd3+ > K+ > Bi3+ > Ba2+. EDX measurements were used to verify the presence of Ca, Ti, O, Sm, K, Mg, Ba, Gd and Bi atoms in the prepared phosphor samples. The Sm3+ ion shows emission peaks at 564, 599 and 646 nm due to 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 transitions upon 407 nm excitation, among which the peak situated at 599 nm has maximum emission intensity. Concentration quenching was observed above 2 mol% of Sm3+ ions in this host. However, the emission intensity of Sm3+ peaks can be enhanced using different modifier (Li+/K+/Mg2+/Ba2+/Gd3+/Bi3+) ions. It was found that the size (ionic radii) and charge compensation of the ion together play a dominant role. The enhancement is more after co-doping with smaller radius ions (Li+, Mg2+ and Gd3+), among which Li+ shows the largest enhancement. This is because ions of smaller size will be able to go closer to the activator ion and the charge imbalance causes a larger field. The CIE color coordinates, correlated color temperature (CCT) and color purity of the phosphors were calculated and show orange-red color emissions with a maximum color purity of ∼93% in the case of CaTiO3:2Sm3+/1.0Li+ phosphor. The lifetime value is increased in the presence of these ions. It is again maximum for the Li+ co-doped CaTiO3:2Sm3+ phosphor sample. Thus, the prepared phosphor samples are suitable sources for orange-red light.

5.
Rev Bras Farmacogn ; 33(2): 272-287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778891

RESUMEN

Alpha-lipoic acid is an organic, sulfate-based compound produced by plants, humans, and animals. As a potent antioxidant and a natural dithiol compound, it performs a crucial role in mitochondrial bioenergetic reactions. A healthy human body, on the other hand, can synthesize enough α-lipoic acid to scavenge reactive oxygen species and increase endogenous antioxidants; however, the amount of α-lipoic acid inside the body decreases significantly with age, resulting in endothelial dysfunction. Molecular orbital energy and spin density analysis indicate that the sulfhydryl (-SH) group of molecules has the greatest electron donating activity, which would be responsible for the antioxidant potential and free radical scavenging activity. α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E. α-Lipoic acid enantiomers and its reduced form have antioxidant, cognitive, cardiovascular, detoxifying, anti-aging, dietary supplement, anti-cancer, neuroprotective, antimicrobial, and anti-inflammatory properties. α-Lipoic acid has cytotoxic and antiproliferative effects on several cancers, including polycystic ovarian syndrome. It also has usefulness in the context of female and male infertility. Although α-lipoic acid has numerous clinical applications, the majority of them stem from its antioxidant properties; however, its bioavailability in its pure form is low (approximately 30%). However, nanoformulations have shown promise in this regard. The proton affinity and electron donating activity, as a redox-active agent, would be responsible for the antioxidant potential and free radical scavenging activity of the molecule. This review discusses the most recent clinical data on α-lipoic acid in the prevention, management, and treatment of a variety of diseases, including coronavirus disease 2019. Based on current evidence, the preclinical and clinical potential of this molecule is discussed. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-023-00370-1.

6.
J Phys Chem B ; 126(21): 3931-3939, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35583941

RESUMEN

In the present study, an investigation of the electronic excitation energy transfer between two p-type fluorescent semiconductors, F8BT [poly(9,9-dioctylfluorene-alcohol-benzothiadiazole] and TIPS-P [6,13-bis(triisopropylsilylethynyl)pentacene], has been carried out in a chloroform solution using steady-state and time-domain fluorescence techniques. The spectral overlap integral between donor (F8BT) emission and acceptor (TIPS-P) absorption is 2.04 × 1015 nm4/(M cm), and the corresponding critical transfer distance is 53.12 Å. In donor decay dynamics, at the lower acceptor concentrations, the observed results deviate from the Förster theory due to the combined effect of diffusion and energy migration. However, it does not exhibit energy migration and distribution for higher acceptor concentrations, and the system follows the Förster model of resonance excitation energy transfer (FRET). The higher value of the donor-acceptor interaction strength than self-interaction (donor-donor interaction) appears to be responsible for this behavior. Further, in acceptor decay, the appearance of the rise time and its decrease with the acceptor concentration confirms FRET from F8BT to TIPS-P.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Tiadiazoles , Colorantes , Transferencia Resonante de Energía de Fluorescencia/métodos , Compuestos de Organosilicio , Poli A , Semiconductores
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120825, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999357

RESUMEN

In the present work, the effect of polymer microenvironment on the photophysics of gentisic acid molecule [2,5-dihydroxybenzoic acid] (GA), steady-state and time-domain fluorescence measurements at different pH conditions were carried out in protic [polyvinyl alcohol PVA] and aprotic [polymethyl methacrylate (PMMA)] polymer matrices. Change in the proticity of the microenvironment of the polymer traps different ionic species along with the neutral form of rotamer P and R conformers of GA molecule, are found to be responsible for the change in the spectral, multi-exponential decay behaviour. In protic polymer, the appearance of a single emission band indicates, dissociation of the GA molecule is very high, and it present as a monoanion along with hydrogen-bonded P and R rotamers. However, in the basic polymer film, most of the conformers of R converted to the anion. In contrast, protonation slows down the dissociation of both P and R forms in the acidic film. Unlike PVA matrix, in PMMA, dual emission band appears due to slow dissociation of GA molecule and hydrogen-bonded rotamer P, and R form exists with monoanion species. The magnitude of large stokes shifted red emission due to excited-state intramolecular proton transfers (ESIPT) found grater in rotamer P compared to its anionic species (green emission) and a blue emission corresponds to rotamer R.


Asunto(s)
Gentisatos , Polímeros , Protones , Espectrometría de Fluorescencia
8.
J Biomol Struct Dyn ; 40(14): 6439-6449, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33663345

RESUMEN

Developing novel drug molecules against HIV is a scientific quest necessitated by development of drug resistance against used drugs. We report comparative results of molecular dynamics simulation studies on 11 structural analogues of Saquinavir (SQV) - against HIV-protease that were earlier examined for pharmacodynamic and pharmacokinetic properties. We reported analogues S1, S5 and S8 to qualify the ADMET criterion and may be considered as potential lead molecules. In this study the designed molecules were successively docked with native HIV-protease at AutoDock. Docking scores established relative goodness of the 11 analogues against the benchmark for Saquinavir. The docked complexes were subjected to molecular dynamics simulation studies using GROMACS 4.6.2. Four parameters viz. H-bonding, RMSD, Binding energy and Protein-Ligand Distance were used for comparative analyses of the analogues relative to Saquinavir. The comparison and analysis of the results are indicative that analogues S8, S9 and S1 are promising candidates among all the analogues studied. From our earlier work and present study it is evident that among the three S8 and S1 qualify the ADMET criterion and between S1 and S8, the analogue S8 shows more target efficacy and specificity over S1 and have better molecular dynamics simulation results. Thus, of the 11 de novo Saquinavir analogues, the S8 appears to be the most promising candidate as lead molecule for HIV-protease inhibitor and is best suited for testing under biological system. Further validation of the proposed lead molecules through wet lab studies involving antiviral assays however is required.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Infecciones por VIH , Inhibidores de la Proteasa del VIH , Infecciones por VIH/tratamiento farmacológico , Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Saquinavir/química , Saquinavir/metabolismo , Saquinavir/farmacología
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119100, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33212332

RESUMEN

The present study elucidates the reinvestigation of the photophysical behavior of 3-aminobenzoic acid (3ABA) in solvents of different polarities using the steady-state spectroscopic techniques. Kamlet-Taft and Catalan solvatochromic models have been used to analyze the solvatochromic changes in neat solvents. The hydrogen bond donating ability of the solvent was found to be the main parameter affecting the spectral behavior of 3ABA. The solvatochromic characteristics of 3ABA have also been examined in binary solvent mixtures viz. acetonitrile (ACN)-methanol (MeOH) and benzene (BEN)-MeOH using the concept of preferential solvation. The preferential solvation of 3ABA shows unusual behavior for BEN-MeOH binary mixture and described unnoticed sigmoidal behavior in the ground state and synergistic impact in the excited state. Besides, the 3ABA was studied theoretically by quantum chemical calculations using (HF) Hartree-Fock and (DFT/B3LYP) density functional theories and its electronic absorption bands have been assigned by time-dependent density functional theory (TD-DFT). The effect of solvents on 3ABA was considered using a IEF-PCM-TDDFT (integral equation formalism of the polarizable continuum model- TDDFT) method. Thus, the theoretical results were found to be closer to the experimental results.

10.
ACS Omega ; 4(3): 5509-5516, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459712

RESUMEN

The present study demonstrates the near-field effect of silver nanostructure island films (SNIFs) on the photophysics and exited-state dynamics of quinine sulphate (QS) and its di-cation (QSD), doped in polyvinyl alcohol (PVA) films. The results indicate a nearly 3.8-fold enhancement in absorption and 4000-fold enhancement in fluorescence in SNIF-coated QS-doped PVA films, whereas only twofold enhancement in absorption and sevenfold enhancement in fluorescence intensity are found in SNIF-coated QSD-doped PVA films. However, an increase in photostability and a decrease in decay time have been observed in both the SNIF-coated films as compared to their uncoated forms. Further, a decrease in the magnitude of the edge excitation red shift in emission spectra along with a red shift in the La band and a rise in the intensity of the Lb band of excitation is observed in SNIF-coated QSD films because of strong coupling of the Lb band with the surface plasmons of silver nanoparticles. Moreover, X-ray photoelectron spectroscopic measurement of silver nanoparticle-coated QS-PVA films shows no change in 3d3/2 and 3d5/2 transitions of silver, whereas the decrease in energy in these silver transitions in the QSD-PVA system is observed as compared to silver nanoparticle-coated PVA films. These results indicate the formation of a field-governed radiating plasmon and plasmon-coupled unified fluorophore system, respectively. This affects the photophysics of both of the molecules by plasmonic coupling of the Frank-Condon state, solvent relaxation state, and charge-transfer state by different orders of magnitude.

11.
Arch Virol ; 164(4): 949-960, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30680529

RESUMEN

HIV is one of the most lethal viral diseases in the human population. Patients often suffer from drug resistance, which hampers HIV therapy. Eleven different structural analogues of saquinavir (SQV), designed using ChemSketch™ and named S1 through S11, were compared with SQV with respect to their pharmacodynamic and pharmacokinetic properties. Pharmacokinetic predictions were carried out using AutoDock, and molecular docking between macromolecule HIV protease (PDB ID: 3IXO) and analogues S1 - S11 as ligands was performed. Analogues S1, S3, S4, S9 and S11 had lower binding scores when compared with saquinavir, whereas that of analogue S5 was similar. Pharmacokinetic predictions made using ACDilab2, including the Lipinski profile, general physical features, absorption, distribution, metabolism and excretion parameters, and toxicity values, for the eleven analogues and SQV suggested that S1 and S5 are pharmacodynamically and pharmacokinetically robust molecules that could be developed and established as lead molecules after in vitro and in vivo studies.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacocinética , VIH-1/enzimología , Saquinavir/análogos & derivados , Saquinavir/farmacocinética , Animales , Infecciones por VIH/virología , Proteasa del VIH/química , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/administración & dosificación , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Ratones , Simulación del Acoplamiento Molecular , Saquinavir/administración & dosificación
12.
J Photochem Photobiol B ; 189: 292-297, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30445361

RESUMEN

Acetylsalicylic acid commonly termed as aspirin (AS) is a well known antipyretic and anti-inflammatory drug which can also be used to reduce death risks due to heart attack. In addition to this, it also exhibits some adverse effect such as gastrointestinal, tinnitus, Reye's syndrome. The side effects of AS such as gastrointestinal ulcer, tinnitus and Reye's syndrome are caused due to conversion of AS into its active metabolite salicylic acid (SAL). Conversion of AS into SAL has been investigated generally at basic pH. Since the pH of Gastrointestinal tract is on average neutral ranging from 6.5-7.4. Therefore in the present research work, in vitro conversion of AS to SAL was detected at neutral pH in both aqueous medium and human blood serum samples by time series fluorescence measurements and DFT study. The SAL obtained from AS at neutral pH was observed to be stable for ~ 6 and ~ 4 days in aqueous medium and blood serum, respectively. The mechanism of conversion of AS into SAL was investigated using the transition state theory employing density functional theory (DFT). On the basis of DFT calculation the in vitro formation of SAL from AS at neutral pH was found to involve two intermediate transition states.


Asunto(s)
Aspirina/química , Ácido Salicílico/química , Teoría Funcional de la Densidad , Humanos , Concentración de Iones de Hidrógeno , Espectrometría de Fluorescencia
13.
Biosens Bioelectron ; 101: 103-109, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29054021

RESUMEN

Highly fluorescent nitrogen doped carbon quantum dots (NCQDs) were synthesized using microwave assisted green method. It was characterized by Transmission Electron Microscopy (TEM), FTIR, UV-Visible absorption and Photoluminiscence (PL) techniques. The NCQDs were immobilized with an enzyme named quinolinate phoshphoribosyl transferase (QPRTase). The NCQDs immobilized by QPRTase was used as a fluorescent bioprobe for the selective detection of endogenous neurotoxin quinolinic acid (QA) whose elevated level in serum is marker of many neurological disorders such as Alzheimer's, Huntington's and HIV associated dementia (HAD) as well as deficiency of vitamin B6. Steady state PL studies were carried out to measure the PL response of the fabricated fluorescent bioprobe as a function of QA concentrations in human serum samples. This probe was found applicable in linear range [3.22-51µM] with the limit of detection ~ 6.51µM. It has desirable sensitivity ~ (0.02340±0.0001) µM-1, excellent stability for ~ 7 weeks and good reproducibility. The similar response of this fluorescent bioprobe for QA detection in triple distilled water and human serum shows that it is unaffected by variation in media. Hence, this fluorescent bioprobe can be employed for QA detection in serum sample for the early detection of many diseases.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono/química , Colorantes Fluorescentes/química , Neurotoxinas/sangre , Nitrógeno/química , Puntos Cuánticos/química , Ácido Quinolínico/sangre , Técnicas Biosensibles/instrumentación , Enzimas Inmovilizadas/química , Humanos , Límite de Detección , Neurotoxinas/análisis , Pentosiltransferasa/química , Ácido Quinolínico/análisis , Reproducibilidad de los Resultados
14.
J Med Chem ; 59(7): 3418-26, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27007481

RESUMEN

The metabolic transformation of antirheumatic fluorescent drug leflunomide into its active metabolite teriflunomide through isoxazole ring opening has been monitored in vitro using steady state and time domain fluorescence spectroscopy and density functional theory. During metabolic reaction, absorption of leflunomide split into two bands resembling absorption spectra of teriflunomide. The fluorescence spectra reveal slow conversion of leflunomide to E and Z forms of teriflunomide in aqueous medium, which becomes faster at basic pH. The E form, which is more potent as a drug, becomes more stable with an increase in the basicity of the medium. Both molecules are associated with charge transfer due to twisting in the lowest singlet excited state. Excited state charge transfer followed by proton transfer was also observed in the Z form during the ring opening of leflunomide. Quantum yield and radiative decay rates have been observed to decrease for the metabolite because of an increase in nonradiative decay channels.


Asunto(s)
Crotonatos/química , Crotonatos/metabolismo , Fluorescencia , Isoxazoles/química , Isoxazoles/metabolismo , Teoría Cuántica , Toluidinas/química , Toluidinas/metabolismo , Antirreumáticos/química , Antirreumáticos/metabolismo , Hidroxibutiratos , Técnicas In Vitro , Leflunamida , Modelos Moleculares , Nitrilos , Protones , Espectrometría de Fluorescencia
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 154: 200-206, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26529636

RESUMEN

Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Creatinina/análogos & derivados , Urea/análogos & derivados , Complejos de Coordinación/síntesis química , Creatinina/síntesis química , Ligandos , Modelos Moleculares , Teoría Cuántica , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Urea/síntesis química
16.
Nanoscale ; 7(14): 6083-92, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25767916

RESUMEN

The coupling of organic molecule excitons with metal nano-structure surface plasmons can improve the performance of optoelectronic devices. This paper presents the effect of localized silver metal surface plasmons on spectral as well as charge transport properties of ordered molecular Langmuir Schaefer (LS) films of a fluorescent conducting multifunctional organic polymer: poly (3,3'''-dialkylquarterthiophene) [PQT-12]. The stability and thickness of the PQT-12 LS film were studied by the pressure vs. area isotherm curve. Atomic force microscopy images indicate the formation of a smooth ordered polymer thin LS film of PQT-12 over silver nanostructure island films [SNIF] (∼40 to 50 nm in size). Raman, electronic absorption and fluorescence spectral measurements of the PQT-12 LS film, near SNIF i.e. the near field, show a plasmon coupled enhancement of ∼13 fold in the intensity of Raman bands along with a two-fold enhancement in the absorption band (531 nm) and a six-fold enhancement in the fluorescence band (665 nm) coupled with a decrease in fluorescence decay time with improved photostability as compared to an identical control sample containing no SNIF i.e. the far field condition. These results indicate the formation of a plasmon coupled unified fluorophore system due to adsorption of the PQT-12 LS film over SNIF. The effect of plasmonic coupling is also studied by applying an electric field in sandwiched structures of Al/PQT-12 LS/SNIF/ITO with respect to Al/PQT-12 LS/ITO. Nearly three orders of magnitude enhancement in the current density (J-V plot) of the PQT-12 LS film is observed in the presence of SNIF, which further increases, on illuminating the film by green laser light [532 nm], while the fluorescence intensity and decay time decrease. X-ray photoelectron spectroscopic measurements of SNIF also show a red shift in 3d3/2 and 3d5/2 transitions of silver in the PQT-12 coated LS film, which indicates partial charge transfer from the PQT-12 polymer backbone to SNIF and causes an enhancement in conductivity. This again supports the formation of a field controlled radiating plasmon coupled fluorophore unified system. These findings show greater potential in developing a voltage controlled high photon flux electroluminescent material for multifarious applications.

17.
Bioinformation ; 10(4): 227-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24966525

RESUMEN

A fundamental issue related to therapy of HIV-1 infection is the emergence of viral mutations which severely limits the long term efficiency of the HIV-protease (HIV-PR) inhibitors. Development of new drugs is therefore continuously needed. Chemoinformatics enables to design and discover novel molecules analogous to established drugs using computational tools and databases. Saquinavir, an anti-HIV Protease drug is administered for HIV therapy. In this work chemoinformatics tools were used to design structural analogs of Saquinavir as ligand and molecular dockings at AutoDock were performed to identify potential HIV-PR inhibitors. The analogs S1 and S2 when docked with HIV-PR had binding energies of -4.08 and -3.07 kcal/mol respectively which were similar to that for Saquinavir. The molecular docking studies revealed that the changes at N2 of Saquinavir to obtain newly designed analogs S1 (having N2 benzoyl group at N1) and S2 (having 3-oxo-3phenyl propanyl group at N2) were able to dock with HIV-PR with similar affinity as that of Saquinavir. Docking studies and computationally derived pharmacodynamic and pharmacokinetic properties׳ comparisons at ACD/I-lab establish that analog S2 has more potential to evade the problem of drug resistance mutation against HIV-1 PR subtype-A. S2 can be further developed and tested clinically as a real alternative drug for HIV-1 PR across the clades in future.

18.
Arch Virol ; 159(8): 2069-80, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24643333

RESUMEN

Acquired immunodeficiency syndrome (AIDS) is a major health problem in many parts of the world. The human immunodeficiency virus-1 integrase (HIV-1 IN) enzyme has been targeted in HIV patients for therapy. Several integrase inhibitors have been reported, but only elvitegravir (EVG), a new-generation drug, is clinically approved for HIV treatment. In the present work, we investigated two structural analogs of EVG as potential inhibitors of the target molecule, HIV-1 IN. The ligand binding site on HIV-1 IN was identified using Q-SiteFinder, and the HIV-1 IN protein was docked with ligand (EVG and/or analogs) using AutoDock 4. The results suggest that Lys173, Thr125, and His171 are involved in enzyme-substrate binding through hydrogen bonds. Single mutations carried out at Lys173, viz. Lys173Leu (polar > nonpolar) and Lys173Gln (polar > polar), in chain B using PyMOL showed the mutants to have lower binding energy when docked with analog 2, suggesting it to be more stable than analog 1. In conclusion, the mutant HIV-1 IN can bind EVG and its analogs. The physicochemical and pharmacokinetic parameters also show analog 2 to be a promising molecule that can be developed as an alternative to EVG to help overcome the problem of drug resistance by HIV to this inhibitor. Analog 2 may be used as an HIV-1 IN inhibitor with similar potential to that of EVG. Further validation through wet-lab studies, however, is required for future applications.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/química , VIH-1/efectos de los fármacos , Quinolonas/química , Quinolonas/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Farmacorresistencia Viral , Infecciones por VIH/virología , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , VIH-1/química , VIH-1/enzimología , VIH-1/genética , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular
19.
Phys Chem Chem Phys ; 15(45): 19538-44, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24100377

RESUMEN

Distance dependent singlet and triplet metal-enhanced emission of eosin from silica coated silver island films (SiFs) has been studied by steady-state and time resolved fluorescence techniques, along with theoretical finite difference time domain (FDTD) numerical simulations, to understand how the thickness of the dielectric coating surrounding silver nanoparticles fundamentally affects luminescence enhancement. Our findings suggest that the distance dependence of metal-enhanced phenomena such as fluorescence, phosphorescence and delayed fluorescence is underpinned by the decay of the electric near-field, and depending on the actual silver silica sample embodiment, one can see either decreased or enhanced luminescence. These results not only expand our current MEF thinking but also suggest that one may well be able to approximate plasmon-enhanced luminescence values.

20.
Artículo en Inglés | MEDLINE | ID: mdl-21501968

RESUMEN

Photophysical properties of 5-aminoquinoline (5AQ) have been investigated in various non-polar and polar (protic and aprotic) solvents using steady state and time resolved fluorescence. In aprotic solvents, the spectral maxima depend on the polarity. However, in protic solvents both the fluorescence intensity as well decay time show decrease depending on the hydrogen bonding ability of the solvent. The results suggest that photochemistry 5AQ is quite sensitive towards the polarity as well as protic character of the solvent.


Asunto(s)
Aminoquinolinas/química , Enlace de Hidrógeno , Fotoquímica , Solventes/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...