Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 6(2): 481-488, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38235088

RESUMEN

The elimination of the nitrogen pollutant nitrate ions through the electrochemical synthesis of ammonia is an important and environment friendly strategy. Electrochemical nitrate reduction requires highly efficient, selective, and stable catalysts to convert nitrate to ammonia. In this work, a composite of copper oxide and MXene was synthesized using a combustion technique. As reported, nitrate ions are effectively adsorbed by CuxO (CuO & Cu2O) nanoparticles. Herein, MXene is an excellent assembly for anchoring CuxO on its layered surface because it has a strong support structure. Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses show the presence of oxidation states of metal ions and the formation of CuxO nanofoam anchors on the surface of MXene (Ti3C2Tx). The optimized CuxO/Ti3C2Tx composite exhibits an improved nitrate reduction reaction. The electrochemical studies of CuxO/Ti3C2Tx show an interesting nitrate reduction reaction (NO3RR) with a current density of 162 mA cm-2. Further, CuxO/Ti3C2Tx shows an electrocatalytic activity with an ammonia production of 41 982 µg h-1 mcat-1 and its faradaic efficiency is 48% at -0.7 V vs. RHE. Thus, such performance by CuxO/Ti3C2Tx indicates a well-suitable candidate for nitrate ion conversion to ammonia.

3.
Nanoscale ; 15(27): 11497-11505, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37338060

RESUMEN

Clean water and sanitation are two of the most important challenges worldwide and the main source for freshwater is groundwater. Nowadays, water is polluted by human activities. Concern about the presence of nitrates (NO3-) in groundwater is increasing day-by-day due to the intensive use of fertilizers and other anthropogenic sources, such as sewage or industrial wastewater discharge. Thus, the main solution available is to remove NO3- from groundwater and transfer it back to a usable nitrogen source. Electrochemical reduction of NO3- to ammonia (NH3) under ambient conditions is a highly desirable method and it needs an efficient electrocatalyst. In this work, we synthesized a composite of amorphous boron with graphene oxide (B@GO) as an efficient catalyst for the nitrate reduction reaction. XRD and TEM analysis revealed an amorphous boron decoration on the graphene oxide sheet, and XPS confirmed that no bonding between boron and carbon occurs. In B@GO, a stronger defect carbon peak was observed than in GO and there was a random distribution of boron particles on the surface of the graphene nanosheets. Amorphous boron exhibits a higher bond energy, more reactivity, and chemical activity toward nitrate ions, which could be due to the lone pair present in the B atoms and could also be due to the edge oxidized B atoms. B@GO has a high number of active sites exposed leading to excellent nitrate reduction performance with a faradaic efficiency of 61.88% and good ammonia formation rate of 40006 µg h-1 mcat-1 at -0.8 V versus reversible hydrogen electrode.

4.
J Phys Chem Lett ; 14(7): 1910-1917, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36786484

RESUMEN

The most commonly used surface capping ligands, like oleic acid and oleylamine, passivate the surface of perovskite nanocrystals (PNCs) to enhance their stability and optical properties. However, due to their inherent insulating nature, charge transport across the surface of the PNCs is hindered, limiting their application in devices. In this study, we have post-treatment CsPbBr3 PNCs with short chain ligands benzoic acid (BA) and ascorbic acid (AA) and observed that both acid-treated PNCs show enhanced stability and optical properties. Still, BA-treated PNCs show the highest charge transport rate due to their conjugating nature. The photoelectrochemical measurements also show the most efficient electron flow across the surface of the PNC with BA-treated PNCs. A longer carrier lifetime and fast charge transfer make BA-treated PNCs ideal candidates for application in real-life devices.

5.
Nanoscale Adv ; 4(22): 4766-4781, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36381516

RESUMEN

We present a facile synthetic approach for the growth of two-dimensional CsPbBr3 nanoplatelets (NPLs) in the temperature range of 50-80 °C via the vacuum-assisted low-temperature (VALT) method. In this method, we utilized the solubility of the PbBr2 precursor at temperatures high than the reaction temperature, thus making Br available during the reaction to form NPLs with fewer defects. The high chemical availability of Br during the reaction changes the growth dynamics and formation of highly crystalline nanoplatelets. Using this method, we have synthesized NPLs with an emission wavelength range of 450 to 485 nm that have high photoluminescence quantum yields (PLQY) from 80 to 100%. The synthesized NPLs retain their initial PLQY of about 80% after one month at ambient conditions. The formation of NPLs with fewer defects and enhanced radiative recombination was further confirmed by X-ray diffraction (XRD), reduced Urbach energy, time-resolved photocurrent measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FTIR) spectroscopy. Additionally, we utilized the synthesized NPLs for the fabrication of down-conversion light emitting diodes (LEDs), and the electroluminescence peak was barely shifted compared to the photoluminescence peak.

6.
J Phys Chem Lett ; 13(40): 9480-9493, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36200748

RESUMEN

In recent years, colloidal cesium lead halide (CsPbX3) perovskite nanocrystals (PNCs) have attracted significant attention from researchers due to their unique optical properties and potential use in optoelectronic applications. In colloidal synthesis, oleic acid and oleylamine are commonly used as surface-capping ligands. Although oleylamine plays a crucial role in maintaining the colloidal stability and surface passivation of PNCs, its dynamic equilibrium with oleic acid leads to the formation of labile oleylammonium, which pulls halides from the surface of PNCs and thus degrades the crystals. In this Perspective, we summarize the various approaches for eliminating the amines to make high-quality, photostable, and amine-free CsPbX3 PNCs. In addition, we look over the prospects of these PNCs regarding stability in different environmental conditions, photoluminescence properties, and optoelectronic device performance. This perspective will give a broad overview of amine-free PNCs starting from their synthesis, challenges, and optoelectronic properties to their future prospects.


Asunto(s)
Nanopartículas , Ácido Oléico , Aminas , Compuestos de Calcio , Cesio , Óxidos , Titanio
7.
Inorg Chem ; 61(2): 1059-1066, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34962784

RESUMEN

Owing to their superior photostability, green-emitting graded alloy core/shell giant quantum dots (g-QDs) can be applied in optoelectronics. However, it is essential to understand how the shell thickness affects interfacial charge separation. This work explores the impact of shell thickness on photoinduced electron transfer (PET) and photoinduced hole transfer (PHT) with an electron acceptor benzoquinone and a hole acceptor phenothiazine, respectively. Four graded alloy core/shell green-emitting g-QDs with different shell thicknesses were synthesized. The PET and PHT rate constants were obtained from photoluminescence and PL lifetime decay measurements. Our study concludes that g-QDs with a diameter of ∼7.14 show a substantial improvement in charge transfer compared with g-QDs ≥8.5 nm in diameter. Similarly, the PET and PHT rates are 3.7 and 4.1 times higher for 7.14 nm g-QDs than for the 10.72 nm sample. The calculated electron and hole transfer rate constants (ket/ht) of g-QDs with 7.14 nm in diameter are 10.80 × 107 and 14 × 107 s-1, which are 8.5 and 8 times higher compared to g-QDs with 10.72 nm in diameter. These results highlight the impact of shell thickness on the excited-state interactions of green-emitting g-QDs and conclude that g-QDs with a relatively thin shell can be a better choice as photoactive materials for photocatalyst, photodetector, and solar cells.

8.
Nanoscale ; 13(30): 13142-13151, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34477797

RESUMEN

Recently, lead halide perovskite nanocrystals (PNCs) have attracted intense interest as promising active materials for optoelectronic devices. However, their extensive applications are still hampered by poor stability under ambient conditions. Oleic acid and oleylamine are the most commonly used ligands in colloidal CsPbX3 (X = Cl, Br, and I) synthesis. Oleylamine plays a dual role as it stabilizes the surface but in the long run or post-synthesis, it may disturb the colloidal stability due to facile proton exchange leading to the formation of labile oleylammonium halide, which detaches the halide ions from the NC surface. To address these issues, herein, we report an open-atmospheric, facile, efficient, and completely amine-free synthesis of cesium lead bromide perovskite nanocrystals using a novel bromine precursor, bromopropane, which is inexpensive and available at hand. The reaction mechanism follows a trioctylphosphine/oleic acid-mediated surface passivation route that provides an amine-free reaction environment to stabilize ligand capping on the NC surface. Uniform, highly monodisperse NCs of size ∼29 nm were obtained. The as-synthesized NCs have a high photoluminescence quantum yield (PLQY) of around 80%, and especially, exhibited strong stability under ambient conditions and continuous UV irradiation. The PLQY can maintain 83% of the initial one even after 120 days. Furthermore, after 96 h of continuous irradiation under UV light at 365 nm (8 W cm-2) under open ambient conditions, the photoluminescence (PL) intensity showed retention of 68% of its original value with no significant changes in the full width at half-maximum, whereas the amine-based sample retains only 5% of its original PL intensity. Furthermore, we have utilized these NCs to fabricate stable down-converted LED devices. The present work demonstrated the synthesis of ultra-stable CsPbBr3 NCs that can be an ideal candidate for display applications.

9.
Nanoscale ; 13(34): 14442-14449, 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34473818

RESUMEN

Cesium lead halide perovskite nanocrystals (CsPbX3 NCs) have been the flourishing area of research in the field of photovoltaic and optoelectronic applications because of their excellent optical and electronic properties. However, they suffer from low stability and deterioration of photoluminescence (PL) properties post-synthesis. In this work, we demonstrate that incorporating an additional ligand can further enhance the optical properties and stability of NCs. Here, we introduced phthalimide as a new surface passivation ligand into the oleic acid/oleylamine system in situ to get near-unity photoluminescence quantum yield (PLQY) of CsPbBr3 and CsPbI3 perovskite NCs. Phthalimide passivation dramatically improves the stability of CsPbCl3, CsPbBr3, and CsPbI3 NCs under ambient light and UV light. The PL intensity was recorded for one year, which showed a dramatic improvement for CsPbBr3 NCs. Nearly 11% of PL can be retained even after one year with phthalimide passivation. CsPbCl3 NCs exhibit 3 times higher PL with phthalimide and retain 12% PL intensity even after two months, while PL of as-synthesized NCs completely diminishes. Under continuous UV light illumination, the PL intensity of phthalimide passivated NCs is well preserved, while the as-synthesized NCs exhibit negligible PL emission in 2 days. About 40% and 25% of initial PL is preserved for CsPbBr3 and CsPbCl3 NCs in the presence of phthalimide. CsPbI3 NCs with phthalimide exhibit PL even after 2 days, while PL for as-synthesized NCs rapidly declined in the first 10 h. The presence of phthalimide in CsPbI3 NCs could maintain stability even after a week, while the as-synthesized NCs underwent a transition to the non-luminescent phase within 4 days. Furthermore, blue, green, yellow, and red-emitting diodes using CsPbCl1.5Br1.5, CsPbBr3, CsPbBr1.5I1.5, CsPbI3 NCs, respectively, are fabricated by drop-casting NCs onto blue LED lights, which show great potential in the field of display and lighting technologies.

10.
Nanoscale Adv ; 3(24): 6984-6991, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36132372

RESUMEN

Highly efficient green-emitting core/shell giant quantum dots have been synthesized through a facile "one-pot" gradient alloy approach. Furthermore, an additional ZnS shell was grown using the "Successive Ionic Layer Adsorption and Reaction" (SILAR) method. Due to the faster reactivity of Cd and Se compared to an analogue of Zn and S precursors it is presumed that CdSe nuclei are initially formed as the core and gradient alloy shells simultaneously encapsulate the core in an energy-gradient manner and eventually thick ZnS shells were formed. Using this gradient alloy approach, we have synthesized four different sized green-emitting giant core-shell quantum dots to study their shell thickness-dependent photostability under continuous UV irradiation, and temperature-dependent PL properties of nanocrystals. There was a minimum effect of the UV light exposure on the photostability beyond a certain thickness of the shell. The QDs with a diameter of ≥8.5 nm show substantial improvement in photostability compared to QDs with a diameter ≤ 7.12 nm when continuously irradiated under strong UV light (8 W cm-2, 365 nm) for 48 h. The effect of temperature on the photoluminescence intensities was studied with respect to the shell thickness. There were no apparent changes in PL intensities observed for the QDs ≥ 8.5 nm, on the contrary, for example, QDs with <8.5 nm in diameter (for ∼7.12 nm) show a decrease in PL intensity at higher temperatures ∼ 90 °C. The synthesized green-emitting gradient alloy QDs with superior optical properties can be used for highly efficient green-emitters and are potentially applicable for the fabrication of green LEDs.

11.
Nanoscale Adv ; 3(9): 2547-2553, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-36134154

RESUMEN

In recent years inorganic lead halide perovskite nanocrystals (PNCs) have been used in photocatalytic reactions. The surface chemistry of the PNCs can play an important role in the excited state interactions and efficient charge transfer with redox molecules. In this work, we explore the impact of CsPbBr3 nanocrystal surface modification on the excited state interactions with the electron acceptor benzoquinone (BQ) for three different ligand environments: as oleic acid/oleylamine (OA/OAm), oleic acid (OA)/trioctylphosphine (TOP), and oleic acid (OA)/oleylamine (OAm)/trioctylphosphine (TOP) ligands. Our finding concludes that amine-free PNCs (OA/TOP capped) exhibit the best excited state interactions with benzoquinone compared to the conventional oleylamine ligand environment. The photoinduced electron transfer (PET) rate constants were measured from PL-lifetime decay measurement. The amine-free PNCs show the highest PET which is 9 times higher than that of conventional ligand capped PNCs. These results highlight the impact of surface chemistry on the excited-state interactions of CsPbBr3 NCs and in photocatalytic applications. More importantly, this work concludes that amine-free PNCs maintain a redox-active surface with a high photoinduced electron transfer rate which makes them an ideal candidate for photocatalytic applications.

12.
Chemistry ; 26(71): 17195-17202, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-32931596

RESUMEN

Cesium lead halide perovskite nanocrystals (NCs) CsPbX3 (X=Cl, Br, and I) have been prominent materials in the last few years due to their high photoluminescence quantum yield (PLQY) for light-emitting diodes and other significant applications in photovoltaics and optoelectronics. In colloidal CsPbX3 synthesis, the most commonly used ligands are oleic acid and oleylamine. The latter plays an important role in surface passivation but may also be responsible for poor colloidal stability as a result of facile proton exchange leading to the formation of labile oleylammonium halide, which pulls halide ions out of the NC surface. Herein, a facile, efficient, completely amine-free synthesis of cesium lead bromide perovskite nanocrystals using hydrobromic acid as halide source and tri-n-octylphosphane as ligand under open-atmospheric conditions is demonstrated. Hydrobromic acid serves as labile source of bromide ion, and thus this three-precursor approach (separate precursors for Cs, Pb, Br) gives more control than a conventional single-source precursor for Pb and Br (PbBr2 ). The use of HBr paved the way to eliminate oleylamine, and thus the formation of labile oleylammonium halide can be completely excluded. Various Cs:Pb:Br molar ratios were studied and optimum conditions for making very stable CsPbBr3 NCs with high PLQY were found. These completely amine-free CsPbBr3 perovskite NCs synthesized under bromine-rich conditions exhibit good stability and durability for more than three months in the form of colloidal solutions and films, respectively. Furthermore, stable tunable emission across a wide spectral range through anion exchange was demonstrated. More importantly, this work reports open-atmosphere-stable CsPbBr3 NCs films exhibiting strong PL, which can be further used for optoelectronic device applications.

13.
J Chem Phys ; 152(12): 124713, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32241141

RESUMEN

The use of the varied chemical reactivity of precursors to drive the production of a desired nanocrystal architecture has become a common method to grow thick-shell graded alloy quantum dots (QDs) with robust optical properties. Conclusions on their behavior assume the ideal chemical gradation and uniform particle composition. Here, advanced analytical electron microscopy (high-resolution scanning transmission electron microscopy coupled with energy dispersive spectroscopy) is used to confirm the nature and extent of compositional gradation and these data are compared with performance behavior obtained from single-nanocrystal spectroscopy to elucidate structure, chemical-composition, and optical-property correlations. Specifically, the evolution of the chemical structure and single-nanocrystal luminescence was determined for a time-series of graded-alloy "CdZnSSe/ZnS" core/shell QDs prepared in a single-pot reaction. In a separate step, thick (∼6 monolayers) to giant (>14 monolayers) shells of ZnS were added to the alloyed QDs via a successive ionic layer adsorption and reaction (SILAR) process, and the impact of this shell on the optical performance was also assessed. By determining the degree of alloying for each component element on a per-particle basis, we observe that the actual product from the single-pot reaction is less "graded" in Cd and more so in Se than anticipated, with Se extending throughout the structure. The latter suggests much slower Se reaction kinetics than expected or an ability of Se to diffuse away from the initially nucleated core. It was also found that the subsequent growth of thick phase-pure ZnS shells by the SILAR method was required to significantly reduce blinking and photobleaching. However, correlated single-nanocrystal optical characterization and electron microscopy further revealed that these beneficial properties are only achieved if the thick ZnS shell is complete and without large lattice discontinuities. In this way, we identify the necessary structural design features that are required for ideal light emission properties in these green-visible emitting QDs.

14.
J Am Chem Soc ; 140(44): 14878-14886, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30358392

RESUMEN

We report an amine-free synthesis of lead halide perovskite (LHP) nanocrystals, using trioctylphosphine oxide (TOPO) instead of aliphatic amines, in combination with a protic acid (e.g., oleic acid). The overall synthesis scheme bears many similarities to the chemistry behind the preparation of LHP thin films and single crystals, in terms of ligand coordination to the chemical precursors. The acidity of the environment and hence the extent of protonation of the TOPO molecules tune the reactivity of the PbX2 precursor, regulating the size of the nanocrystals. On the other hand, TOPO molecules are virtually absent from the surface of our nanocrystals, which are simply passivated by one type of ligand (e.g., Cs-oleate). Furthermore, our studies reveal that Cs-oleate is dynamically bound to the surface of the nanocrystals and that an optimal surface coverage is critical for achieving high photoluminescence quantum yield. Our scheme delivers NCs with a controlled size and shape: only cubes are formed, with no contamination with platelets, regardless of the reaction conditions that were tested. We attribute such a shape homogeneity to the absence of primary aliphatic amines in our reaction environment, since these are known to promote the formation of nanocrystals with sheet/platelet morphologies or layered phases under certain reaction conditions. The TOPO route is particularly appealing with regard to synthesizing LHP nanocrystals for large-scale manufacturing, as the yield in terms of material produced is close to the theoretical limit: i.e., almost all precursors employed in the synthesis are converted into nanocrystals.

15.
Nat Commun ; 8: 15083, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28497776

RESUMEN

Semiconductor nanostructures capable of emitting from two excited states and thereby of producing two photoluminescence colours are of fundamental and potential technological significance. In this limited class of nanocrystals, CdSe/CdS core/arm tetrapods exhibit the unusual trait of two-colour (red and green) multiexcitonic emission, with green emission from the CdS arms emerging only at high excitation fluences. Here we show that by synthetic shape-tuning, both this multi-colour emission process, and blinking and photobleaching behaviours of single tetrapods can be controlled. Specifically, we find that the properties of dual emission and single-nanostructure photostability depend on different structural parameters-arm length and arm diameter, respectively-but that both properties can be realized in the same nanostructure. Furthermore, based on results of correlated photoluminescence and transient absorption measurements, we conclude that hole-trap filling in the arms and partial state-filling in the core are necessary preconditions for the observation of multiexciton multi-colour emission.

16.
Nano Lett ; 16(10): 6431-6436, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27607441

RESUMEN

Nonclassical growth mechanisms such as self-assembly and oriented attachment are effective ways to build complex nanostructures from simpler ones. In the latter case, the nanoparticle components are electronically coupled; however, control over the attachment between nanoparticles is highly challenging and generally requires a delicate balance between dipole-, ligand-, and solvent-based interactions. To this end, we perform incomplete cation exchange with Ag+ (Cu+) on CdSe-seeded CdS nanorods and tetrapods to exclusively convert their tips into small Ag2S (Cu2S) domains. Selective removal of the ligands from these inorganic domains results in spontaneous, site-specific bridging of the nanoparticles. Using this method, we demonstrate the fabrication of polymer-like linear and branched nanoparticles with enhanced electrical properties, as well as the stoichiometric formation of nanoparticle homo- and heterodimers and tetramers. We show that linked structures can then be completely cation exchanged with Pb2+ to generate PbSe/PbS-based nanostructured photodetector media with enhanced properties.

17.
ACS Nano ; 8(3): 2873-9, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24559396

RESUMEN

We fabricated a single active layer quantum dot light-emitting diode device based on colloidal CdSe (core)/CdS (arm) tetrapod nanostructures capable of simultaneously producing room temperature electroluminesence (EL) peaks at two spectrally distinct wavelengths, namely, at ∼500 and ∼660 nm. This remarkable dual EL was found to originate from the CdS arms and CdSe core of the tetrapod architecture, which implies that the radiative recombination of injected charge carriers can independently take place at spatially distinct regions of the tetrapod. In contrast, control experiments employing CdSe-core-seeded CdS nanorods showed near-exclusive EL from the CdSe core. Time-resolved spectroscopy measurements on tetrapods revealed the presence of hole traps, which facilitated the localization and subsequent radiative recombination of excitons in the CdS arm regions, whereas excitonic recombination in nanorods took place predominantly within the vicinity of the CdSe core. These observations collectively highlight the role of morphology in the achievement of light emission from the different material components in heterostructured semiconductor nanoparticles, thus showing a way in developing a class of materials which are capable of exhibiting multiwavelength electroluminescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...