Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 153(18): 184305, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187438

RESUMEN

The A2Σ+-X2Π electronic transition of the nitrous oxide cation, N2O+, was measured via photodissociation spectroscopy in a cryogenic electrostatic ion storage ring. Rotationally resolved spectra of the N-O stretching vibrational sequence were obtained by detecting neutral N fragments produced via N2O+ → NO+ + N predissociation channels. A new set of molecular constants was determined for the high-lying vibrational levels of the A2Σ+ state.

2.
Phys Rev Lett ; 119(2): 023202, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28753369

RESUMEN

Photodetachment thermometry on a beam of OH^{-} in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional frequency- and time-dependent photodetachment spectroscopy over 20 min of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J=1 natural lifetime (about 193 s) and determine the OH^{-} rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.

3.
Rev Sci Instrum ; 87(6): 063115, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27370434

RESUMEN

An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

4.
Phys Rev Lett ; 116(11): 113002, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-27035300

RESUMEN

We have studied the photodissociation of CH^{+} in the Cryogenic Storage Ring at ambient temperatures below 10 K. Owing to the extremely high vacuum of the cryogenic environment, we were able to store CH^{+} beams with a kinetic energy of ∼60 keV for several minutes. Using a pulsed laser, we observed Feshbach-type near-threshold photodissociation resonances for the rotational levels J=0-2 of CH^{+}, exclusively. In comparison to updated, state-of-the-art calculations, we find excellent agreement in the relative intensities of the resonances for a given J, and we can extract time-dependent level populations. Thus, we can monitor the spontaneous relaxation of CH^{+} to its lowest rotational states and demonstrate the preparation of an internally cold beam of molecular ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...