Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36767498

RESUMEN

Worldwide, oral cancer is the sixth most common type of cancer. India is in 2nd position, with the highest number of oral cancer patients. To the population of oral cancer patients, India contributes to almost one-third of the total count. Among several types of oral cancer, the most common and dominant one is oral squamous cell carcinoma (OSCC). The major reason for oral cancer is tobacco consumption, excessive alcohol consumption, unhygienic mouth condition, betel quid eating, viral infection (namely human papillomavirus), etc. The early detection of oral cancer type OSCC, in its preliminary stage, gives more chances for better treatment and proper therapy. In this paper, author proposes a convolutional neural network model, for the automatic and early detection of OSCC, and for experimental purposes, histopathological oral cancer images are considered. The proposed model is compared and analyzed with state-of-the-art deep learning models like VGG16, VGG19, Alexnet, ResNet50, ResNet101, Mobile Net and Inception Net. The proposed model achieved a cross-validation accuracy of 97.82%, which indicates the suitability of the proposed approach for the automatic classification of oral cancer data.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/epidemiología , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/epidemiología , Mucosa Bucal , Redes Neurales de la Computación
2.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142614

RESUMEN

Understanding the effects of missense mutations on protein stability is a widely acknowledged significant biological problem. Genomic missense mutations may alter one or more amino acids, leading to increased or decreased stability of the encoded proteins. In this study, we describe a novel approach-Protein Stability Prediction with a Gaussian Network Model (PSP-GNM)-to measure the unfolding Gibbs free energy change (ΔΔG) and evaluate the effects of single amino acid substitutions on protein stability. Specifically, PSP-GNM employs a coarse-grained Gaussian Network Model (GNM) that has interactions between amino acids weighted by the Miyazawa-Jernigan statistical potential. We used PSP-GNM to simulate partial unfolding of the wildtype and mutant protein structures, and then used the difference in the energies and entropies of the unfolded wildtype and mutant proteins to calculate ΔΔG. The extent of the agreement between the ΔΔG calculated by PSP-GNM and the experimental ΔΔG was evaluated on three benchmark datasets: 350 forward mutations (S350 dataset), 669 forward and reverse mutations (S669 dataset) and 611 forward and reverse mutations (S611 dataset). We observed a Pearson correlation coefficient as high as 0.61, which is comparable to many of the existing state-of-the-art methods. The agreement with experimental ΔΔG further increased when we considered only those measurements made close to 25 °C and neutral pH, suggesting dependence on experimental conditions. We also assessed for the antisymmetry (ΔΔGreverse = -ΔΔGforward) between the forward and reverse mutations on the Ssym+ dataset, which has 352 forward and reverse mutations. While most available methods do not display significant antisymmetry, PSP-GNM demonstrated near-perfect antisymmetry, with a Pearson correlation of -0.97. PSP-GNM is written in Python and can be downloaded as a stand-alone code.


Asunto(s)
Aminoácidos , Mutación Puntual , Aminoácidos/genética , Proteínas Mutantes , Distribución Normal , Estabilidad Proteica , Termodinámica
3.
PLoS One ; 13(6): e0199225, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29924847

RESUMEN

Dynamic communities in proteins comprise the cohesive structural units that individually exhibit rigid body motions. These can correspond to structural domains, but are usually smaller parts that move with respect to one another in a protein's internal motions, key to its functional dynamics. Previous studies emphasized their importance to understand the nature of ligand-induced allosteric regulation. These studies reported that mutations to key community residues can hinder transmission of allosteric signals among the communities. Usually molecular dynamic (MD) simulations (~ 100 ns or longer) have been used to identify the communities-a demanding task for larger proteins. In the present study, we propose that dynamic communities obtained from MD simulations can also be obtained alternatively with simpler models-the elastic network models (ENMs). To verify this premise, we compare the specific communities obtained from MD and ENMs for 44 proteins. We evaluate the correspondence in communities from the two methods and compute the extent of agreement in the dynamic cross-correlation data used for community detection. Our study reveals a strong correspondence between the communities from MD and ENM and also good agreement for the residue cross-correlations. Importantly, we observe that the dynamic communities from MD can be closely reproduced with ENMs. With ENMs, we also compare the community structures of stable and unstable mutant forms of T4 Lysozyme with its wild-type. We find that communities for unstable mutants show substantially poorer agreement with the wild-type communities than do stable mutants, suggesting such ENM-based community structures can serve as a means to rapidly identify deleterious mutants.


Asunto(s)
Modelos Biológicos , Simulación de Dinámica Molecular , Proteínas/química , Muramidasa/química , Mutación/genética , Distribución Normal
4.
Proteins ; 85(8): 1422-1434, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28383162

RESUMEN

It is known that over half of the proteins encoded by most organisms function as oligomeric complexes. Oligomerization confers structural stability and dynamics changes in proteins. We investigate the effects of oligomerization on protein dynamics and its functional significance for a set of 145 multimeric proteins. Using coarse-grained elastic network models, we inspect the changes in residue fluctuations upon oligomerization and then compare with residue conservation scores to identify the functional significance of these changes. Our study reveals conservation of about ½ of the fluctuations, with » of the residues increasing in their mobilities and » having reduced fluctuations. The residues with dampened fluctuations are evolutionarily more conserved and can serve as orthosteric binding sites, indicating their importance. We also use triosephosphate isomerase as a test case to understand why certain enzymes function only in their oligomeric forms despite the monomer including all required catalytic residues. To this end, we compare the residue communities (groups of residues which are highly correlated in their fluctuations) in the monomeric and dimeric forms of the enzyme. We observe significant changes to the dynamical community architecture of the catalytic core of this enzyme. This relates to its functional mechanism and is seen only in the oligomeric form of the protein, answering why proteins are oligomeric structures. Proteins 2017; 85:1422-1434. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Arginasa/química , D-Aminoácido Oxidasa/química , Glutamato Deshidrogenasa/química , Glicina N-Metiltransferasa/química , Multimerización de Proteína , Triosa-Fosfato Isomerasa/química , Secuencias de Aminoácidos , Animales , Sitios de Unión , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA