Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025731

RESUMEN

Adequate soil moisture around the root zone of the crops is essential for optimal plant growth and productivity throughout the crop season, whereas excessive as well as deficient moisture is usually detrimental. A field experiment was conducted on cotton (Gossipium hirsuttum) with three water regimes (viz. well-watered (control); rainfed after one post-sowing irrigation (1-POSI) and rainfed after two post-sowing irrigations (2-POSI)) in main plots and application of eight osmoprotectants in sub plots of Split plot design to quantify the loss of seed cotton yield (SCY) under high and mild moisture stress. The DSSAT-CROPGRO-cotton model was calibrated to validate the response of cotton crop to water stress. Results elucidated that in comparison of well watered (control) crop, 1-POSI and 2-POSI reduced plant height by 13.5-28.4% and lower leaf area index (LAI) by 21.6-37.6%. Pooled analysis revealed that SCY under control was higher by 1,127 kg ha-1 over 1-POSI and 597 kg ha-1 than 2-POSI. The DSSAT-CROPGRO-cotton model fairly simulated the cotton yield as evidenced by good accuracy (d-stat ≥ 0.92) along with lower root mean square error (RMSE) of ≤183.2 kg ha-1; mean absolute percent error (MAPE) ≤6.5% under different irrigation levels. Similarly, simulated and observed biomass also exhibited good agreement with ≥0.98 d-stat; ≤533.7 kg ha-1 RMSE; and ≤4.6% MAPE. The model accurately simulated the periodical LAI, biomass and soil water dynamics as affected by varying water regimes in conformity with periodical observations. Both the experimental and the simulated results confirmed the decline of SCY with any degree of water stress. Thus, a well calibrated DSSAT-CROPGRO-cotton model may be successfully used for estimating the crop performance under varying hydro-climatic conditions.


Asunto(s)
Riego Agrícola , Deshidratación , Riego Agrícola/métodos , Suelo , Gossypium , Productos Agrícolas
3.
Front Plant Sci ; 13: 1038163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507410

RESUMEN

Surface flood (SF) method is used to irrigate cotton in India, which results in huge wastage of water besides leaching of nutrients. This necessitates the adoption of efficient management strategies to save scarce water without compromising the yield. Therefore, a 2-year field investigation was conducted under two climatic regimes (Faridkot and Abohar) to study the effect of sub-surface drip fertigation (SSDF) on seed cotton yield (SCY), water productivity, nitrogen use efficiency (NUE), and economic parameters in comparison with SF and surface drip fertigation (SDF). The field experiment had a total of eight treatments arranged in a randomized complete block design. Three levels of sub-surface drip irrigation [(SSDI); i.e., 60%, 80%, and 100% of crop evapotranspiration (ETc)] and two N fertigation levels [100% recommended dose of nitrogen (RDN; i.e., 112.5 kg N ha-1) and 75% RDN] made up six treatments, while SF (Control 1) and SDF at 80% ETc (Control 2), both with 100% of RDN, served as the controls. Among irrigation regimes, the SSDI levels of 80% ETc and 100% ETc recorded 18.7% (3,240 kg ha-1) and 21.1% (3,305 kg ha-1) higher SCY compared with SF (2,728 kg ha-1). Water use efficiency under SF (57.0%) was reduced by 34.2%, 40.8%, and 38.2% compared with SSDI's 60 (76.5%), 80 (80.3%), and 100% ETc (78.8%), respectively. Among fertigation levels, NUE was higher by 19.2% under 75% (34.1 kg SCY kg-1 N) over 100% RDN (28.6 kg SCY kg-1 N), but later it also registered 11.9% higher SCY, indicating such to be optimum for better productivity. SSDF at 80% ETc along with 112.5 kg N ha-1 recorded 26.6% better SCY (3455 kg ha-1) and 18.5% higher NUE (30.7 kg SCY kg-1 N) over SF. These findings demonstrate that the application of SSDF could save irrigation water, enhance SCY, and improve the farmers' returns compared with SF. Therefore, in northwestern India, SSDF at 80% ETc along with 112.5 kg N ha-1 could be a novel water-savvy concept which would be immensely helpful in enhancing cotton productivity.

4.
Data Brief ; 24: 103888, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31193349

RESUMEN

A field experiment has been conducted in Cotton-Wheat cropping system for three cropping cycles, wherein we evaluated a total of five treatments (Control, Sub-soiling at 1.0 m, Sub-soiling at 1.5 m, Cross sub-soiling at 1.0 m and Cross sub-soiling at 1.5 m) in complete randomized block design to find out the effect of sub-soiling on the physical properties of soil and root parameters of cotton in Indian Punjab, where heavy machinery usage in farm operations is causing soil compaction leading to ill effects. Data elucidated that any level of sub-soiling not only improved soil physical properties by reduction in bulk density but also enhanced steady state infiltration rate as compared to control. Data also revealed that root length, fresh root weight plant-1 and dry root weight plant-1 of cotton exhibited significant differences in sub-soiled plots versus control for initial two years of experimentation but trivial differences existed thereafter. Consequently, both cotton and wheat crop resulted in higher yield owing to above mentioned reasons. The field data set is made publicly available to enable critical or extended analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...