Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 23(9): 603-622, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35505252

RESUMEN

The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Eucariontes , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , ARN , ARN Polimerasa II/metabolismo , Transcripción Genética/genética
2.
Nat Struct Mol Biol ; 28(12): 997-1008, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887565

RESUMEN

RNA polymerase I (Pol I) specifically synthesizes ribosomal RNA. Pol I upregulation is linked to cancer, while mutations in the Pol I machinery lead to developmental disorders. Here we report the cryo-EM structure of elongating human Pol I at 2.7 Å resolution. In the exit tunnel, we observe a double-stranded RNA helix that may support Pol I processivity. Our structure confirms that human Pol I consists of 13 subunits with only one subunit forming the Pol I stalk. Additionally, the structure of human Pol I in complex with the initiation factor RRN3 at 3.1 Å resolution reveals stalk flipping upon RRN3 binding. We also observe an inactivated state of human Pol I bound to an open DNA scaffold at 3.3 Å resolution. Lastly, the high-resolution structure of human Pol I allows mapping of disease-related mutations that can aid understanding of disease etiology.


Asunto(s)
Neoplasias/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Neoplasias/patología , Unión Proteica/fisiología , Conformación Proteica , Multimerización de Proteína , ARN Polimerasa I/genética , ARN Ribosómico/biosíntesis , Transcripción Genética/genética
3.
Nat Struct Mol Biol ; 28(2): 210-219, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33558764

RESUMEN

RNA polymerase III (Pol III) synthesizes transfer RNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumor transformation, neurodegenerative and developmental disorders, and increased sensitivity to viral infections. Here, we present cryo-electron microscopy structures at 2.8 to 3.3 Å resolution of transcribing and unbound human Pol III. We observe insertion of the TFIIS-like subunit RPC10 into the polymerase funnel, providing insights into how RPC10 triggers transcription termination. Our structures resolve elements absent from Saccharomyces cerevisiae Pol III such as the winged-helix domains of RPC5 and an iron-sulfur cluster, which tethers the heterotrimer subcomplex to the core. The cancer-associated RPC7α isoform binds the polymerase clamp, potentially interfering with Pol III inhibition by tumor suppressor MAF1, which may explain why overexpressed RPC7α enhances tumor transformation. Finally, the human Pol III structure allows mapping of disease-related mutations and may contribute to the development of inhibitors that selectively target Pol III for therapeutic interventions.


Asunto(s)
Modelos Moleculares , ARN Polimerasa III/química , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Conformación Proteica , ARN Polimerasa III/ultraestructura , Transcripción Genética
4.
ACS Chem Neurosci ; 9(7): 1680-1692, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29683649

RESUMEN

The amphiphilic nature of the amyloid-ß (Aß) peptide associated with Alzheimer's disease facilitates various interactions with biomolecules such as lipids and proteins, with effects on both structure and toxicity of the peptide. Here, we investigate these peptide-amphiphile interactions by experimental and computational studies of Aß(1-40) in the presence of surfactants with varying physicochemical properties. Our findings indicate that electrostatic peptide-surfactant interactions are required for coclustering and structure induction in the peptide and that the strength of the interaction depends on the surfactant net charge. Both aggregation-prone peptide-rich coclusters and stable surfactant-rich coclusters can form. Only Aß(1-40) monomers, but not oligomers, are inserted into surfactant micelles in this surfactant-rich state. Surfactant headgroup charge is suggested to be important as electrostatic peptide-surfactant interactions on the micellar surface seems to be an initiating step toward insertion. Thus, no peptide insertion or change in peptide secondary structure is observed using a nonionic surfactant. The hydrophobic peptide-surfactant interactions instead stabilize the Aß monomer, possibly by preventing self-interaction between the peptide core and C-terminus, thereby effectively inhibiting the peptide aggregation process. These findings give increased understanding regarding the molecular driving forces for Aß aggregation and the peptide interaction with amphiphilic biomolecules.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Tensoactivos/farmacología , Péptidos beta-Amiloides/química , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Simulación de Dinámica Molecular , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/metabolismo , Estructura Secundaria de Proteína , Electricidad Estática , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA