Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6025, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758766

RESUMEN

Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.


Asunto(s)
Proteínas CELF , Neocórtex , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Neocórtex/metabolismo , Neuronas/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sinapsis/metabolismo , Proteínas CELF/genética , Proteínas CELF/metabolismo
2.
Cells ; 10(2)2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671178

RESUMEN

Cut-Like Homeobox 2 (Cux2) is a transcription factor involved in dendrite and spine development, and synapse formation of projection neurons placed in mouse upper neocortical layers. Therefore, Cux2 is often used as an upper layer marker in the mouse brain. However, expression of its orthologue CUX2 remains unexplored in the human fetal neocortex. Here, we show that CUX2 protein is expressed in transient compartments of developing neocortical anlage during the main fetal phases of neocortical laminar development in human brain. During the early fetal phase when neurons of the upper cortical layers are still radially migrating to reach their final place in the cortical anlage, CUX2 was expressed in the marginal zone (MZ), deep cortical plate, and pre-subplate. During midgestation, CUX2 was still expressed in the migrating upper cortical neurons as well as in the subplate (SP) and MZ neurons. At the term age, CUX2 was expressed in the gyral white matter along with its expected expression in the upper layer neurons. In sum, CUX2 was expressed in migratory neurons of prospective superficial layers and in the diverse subpopulation of transient postmigratory SP and MZ neurons. Therefore, our findings indicate that CUX2 is a novel marker of distinct transient, but critical histogenetic events during corticogenesis. Given the Cux2 functions reported in animal models, our data further suggest that the expression of CUX2 in postmigratory SP and MZ neurons is associated with their unique dendritic and synaptogenesis characteristics.


Asunto(s)
Axones/metabolismo , Encéfalo/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Neuronas/metabolismo , Encéfalo/embriología , Feto/embriología , Humanos , Estudios Prospectivos , Factores de Transcripción/metabolismo
3.
J Neurosci Methods ; 319: 60-68, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30278184

RESUMEN

BACKGROUND: Early stages of Alzheimer's disease (AD) are characterized by high phosphorylation of microtubule-associated protein tau, which may result from the downregulation of protein phosphatases. NEW METHOD: In order to model phosphatase downregulation and analyze its effect on tau aggregation in vitro, we treated neuroblastoma SH-SY5Y cells with okadaic acid (OA), a protein phosphatase inhibitor, and examined high molecular weight phospho-tau species. RESULTS AND COMPARISON WITH EXISTING METHODS: OA treatment led to the appearance of heat-stable protein species with apparent molecular weight around 100 kDa, which were immunoreactive to anti-tau antibodies against phosphorylated Ser202 and Ser396. As these high molecular weight tau-immunoreactive proteins (HMW-TIPs) corresponded to the predicted size of two tau monomers, we considered the possibility that they represent phosphorylation-induced tau oligomers. We attempted to dissociate HMW-TIPs by urea and guanidine, as well as by alkaline phosphatase treatment, but HMW-TIPs were stable under all conditions tested. These characteristics resemble properties of certain sodium dodecyl sulfate (SDS)-resistant tau oligomers from AD brains. The absence of HMW-TIPs detection by anti-total tau antibodies Tau46, CP27 and Tau13 may be a consequence of epitope masking and protein truncation. Alternatively, HMW-TIPs may represent previously unreported phosphoproteins cross-reacting with tau. CONCLUSIONS: Taken together, our data provide a novel characterization of an OA-based cell culture model in which OA induces the appearance of HMW-TIPs. These findings have implications for further studies of tau under the conditions of protein phosphatase downregulation, aiming to explain mechanisms involved in early events leading to AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Inhibidores Enzimáticos/administración & dosificación , Modelos Biológicos , Ácido Ocadaico/administración & dosificación , Fosfoproteínas Fosfatasas/metabolismo , Proteínas tau/metabolismo , Anticuerpos , Línea Celular Tumoral , Humanos , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosforilación , Ensayo de Radioinmunoprecipitación , Proteínas tau/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...