Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(2): e0194823, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38193676

RESUMEN

Deinococcus radiodurans exhibits remarkable survival under extreme conditions, including ionizing radiation, desiccation, and various DNA-damaging agents. It employs unique repair mechanisms, such as single-strand annealing (SSA) and extended synthesis-dependent strand annealing (ESDSA), to efficiently restore damaged genome. In this study, we investigate the role of the natural transformation-specific protein DprA in DNA repair pathways following acute gamma radiation exposure. Our findings demonstrate that the absence of DprA leads to rapid repair of gamma radiation-induced DNA double-strand breaks primarily occur through SSA repair pathway. Additionally, our findings suggest that the DprA protein may hinder both the SSA and ESDSA repair pathways, albeit in distinct manners. Overall, our results highlight the crucial function of DprA in the selection between SSA and ESDSA pathways for DNA repair in heavily irradiated D. radiodurans.IMPORTANCEDeinococcus radiodurans exhibits an extraordinary ability to endure and thrive in extreme environments, including exposure to radiation, desiccation, and damaging chemicals, as well as intense UV radiation. The bacterium has evolved highly efficient repair mechanisms capable of rapidly mending hundreds of DNA fragments in its genome. Our research indicates that natural transformation (NT)-specific dprA genes play a pivotal role in regulating DNA repair in response to radiation. Remarkably, we found that DprA is instrumental in selecting DNA double-strand break repair pathways, a novel function that has not been reported before. This unique regulatory mechanism highlights the indispensable role of DprA beyond its native function in NT and underscores its ubiquitous presence across various bacterial species, regardless of their NT proficiency. These findings shed new light on the resilience and adaptability of Deinococcus radiodurans, opening avenues for further exploration into its exceptional survival strategies.


Asunto(s)
Proteínas Bacterianas , Deinococcus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reparación del ADN , Roturas del ADN de Doble Cadena , ADN/metabolismo , Daño del ADN , Deinococcus/genética , Deinococcus/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
2.
Microbiol Spectr ; : e0314122, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744915

RESUMEN

DivIVA is a member of the Min family of proteins that spatially regulates septum formation at the midcell position and cell pole determination in Bacillus subtilis. Deinococcus radiodurans, a Gram-positive coccus-shaped bacterium, is characterized by its extreme resistance to DNA-damaging agents, including radiation. D. radiodurans cells exposed to gamma radiation undergo cell division arrest by as-yet-uncharacterized mechanisms. divIVA is shown to be an essential cell division gene in this bacterium, and DivIVA of D. radiodurans (drDivIVA) interacts with genome segregation proteins through its N-terminal region. Earlier, RqkA, a gamma radiation-responsive Ser/Thr quinoprotein kinase, was characterized for its role in radioresistance in D. radiodurans. Here, we showed that RqkA phosphorylates drDivIVA at the threonine 19 (T19) residue. The phospho-mimetic mutant with a mutation of T19 to E19 in DivIVA (DivIVAT19E) is found to be functionally different from the phospho-ablative mutant (DivIVAT19A) or the wild-type drDivIVA. A DivIVAT19E-red fluorescent protein (RFP) fusion expressed in the wild-type background showed the arrest in the typical dynamics of drDivIVA and the loss of its interaction with the genome segregation protein ParA2. The allelic replacement of divIVA with divIVAT19E-rfp was not tolerated unless drDivIVA was expressed episomally, while there was no phenotypic change when the wild-type allele was replaced with either divIVAT19A-rfp or divIVA-rfp. These results suggested that the phosphorylation of T19 in drDivIVA by RqkA affected its in vivo functions, which may contribute to the cell cycle arrest in this bacterium. IMPORTANCE Deinococcus radiodurans, a radioresistant bacterium, lacks LexA/RecA-mediated DNA damage response and cell cycle regulation as known in other bacteria. However, it adjusts its transcriptome and proteome upon DNA damage. In eukaryotes, the DNA damage response and cell cycle are regulated by Ser/Thr protein kinases. In D. radiodurans, we characterized a gamma radiation-responsive Ser/Thr quinoprotein kinase (RqkA) that phosphorylated DNA repair and cell division proteins in this bacterium. In previous work, the effect of S/T phosphorylation by RqkA on activity improvement of the DNA repair proteins has been demonstrated. This study reports that Ser phosphorylation by RqkA attenuates the function of a cell polarity and plane of cell division-determining protein, DivIVA, and its cellular dynamics in response to DNA damage, which might help to understand the mechanism of cell cycle regulation in this bacterium.

3.
J Bacteriol ; 205(2): e0046522, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36695594

RESUMEN

Natural transformation enables bacteria to acquire DNA from the environment and contributes to genetic diversity, DNA repair, and nutritional requirements. DNA processing protein A (DprA) receives incoming single-stranded DNA and assists RecA loading for homology-directed natural chromosomal transformation and DNA strand annealing during plasmid transformation. The dprA gene occurs in the genomes of all known bacteria, irrespective of their natural transformation status. The DprA protein has been characterized by its molecular, cellular, biochemical, and biophysical properties in several bacteria. This review summarizes different aspects of DprA biology, collectively describing its biochemical properties, molecular interaction with DNA, and function interaction with bacterial RecA during natural transformation. Furthermore, the roles of DprA in natural transformation, bacterial virulence, and pilin variation are discussed.


Asunto(s)
Proteínas Fimbrias , Transformación Bacteriana , Proteínas Fimbrias/genética , Proteínas Bacterianas/genética , Virulencia , ADN , ADN de Cadena Simple , Rec A Recombinasas/metabolismo
4.
FASEB Bioadv ; 5(1): 27-42, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36643897

RESUMEN

The polymerization/depolymerization dynamics of FtsZ play a pivotal role in cell division in the majority of the bacteria. Deinococcus radiodurans, a radiation-resistant bacterium, shows an arrest of growth in response to DNA damage with no change in the level of FtsZ. This bacterium does not deploy LexA/RecA type of DNA damage response and cell cycle regulation, and its genome does not encode SulA homologues of Escherichia coli, which attenuate FtsZ functions in response to DNA damage in other bacteria. A radiation-responsive Ser/Thr quinoprotein kinase (RqkA), characterized for its role in radiation resistance in this bacterium, could phosphorylate several cognate proteins, including FtsZ (drFtsZ) at Serine 235 (S235) and Serine 335 (S335) residues. Here, we reported the detailed characterization of S235 and S335 phosphorylation effects in the regulation of drFtsZ functions and demonstrated that the phospho-mimetic replacements of these residues in drFtsZ had grossly affected its functions that could result in cell cycle arrest in response to DNA damage in D. radiodurans. Interestingly, the phospho-ablative replacements were found to be nearly similar to drFtsZ, whereas the phospho-mimetic mutant lost the wild-type protein's signature characteristics, including its dynamics under normal conditions. The kinetics of post-bleaching recovery for drFtsZ and phospho-mimetic mutant were nearly similar at 2 h post-irradiation recovery but were found to be different under normal conditions. These results highlighted the role of S/T phosphorylation in the regulation of drFtsZ functions and cell cycle arrest in response to DNA damage, which is demonstrated for the first time, in any bacteria.

5.
Microbiol Spectr ; 10(6): e0347022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453941

RESUMEN

Environmental DNA uptake by certain bacteria and its integration into their genome create genetic diversity and new phenotypes. DNA processing protein A (DprA) is part of a multiprotein complex and facilitates the natural transformation (NT) phenotype in most bacteria. Deinococcus radiodurans, an extremely radioresistant bacterium, is efficient in NT, and its genome encodes nearly all of the components of the natural competence complex. Here, we have characterized the DprA protein of this bacterium (DrDprA) for the known characteristics of DprA proteins of other bacteria and the mechanisms underlying the DNA-RecA interaction. DrDprA has three domains. In vitro studies showed that purified recombinant DrDprA binds to both single-strand DNA (ssDNA) and double-strand DNA (dsDNA) and is able to protect ssDNA from nucleolytic degradation. DrDprA showed a strong interaction with DrRecA and facilitated RecA-catalyzed functions in vivo. Mutational studies identified DrDprA amino acid residues crucial for oligomerization, the interaction with DrRecA, and DNA binding. Furthermore, we showed that both oligomerization and DNA binding properties of DrDprA are integral to its support of the DrRecA-catalyzed strand exchange reaction (SER) in vitro. Together, these data suggested that DrDprA is largely structurally conserved with other DprA homologs but shows some unique structure-function features like the existence of an additional C-terminal Drosophila melanogaster Miasto-like protein 1 (DML1) domain, equal affinities for ssDNA and dsDNA, and the collective roles of oligomerization and DNA binding properties in supporting DrRecA functions. IMPORTANCE Bacteria can take up extracellular DNA (eDNA) by natural transformation (NT). Many bacteria, including Deinococcus radiodurans, have constitutive competence systems and can take up eDNA throughout their growth phase. DprA (DNA processing protein A) is a transformation-specific recombination mediator protein (RMP) that plays a role in bacterial NT, and the absence of this gene significantly reduces the transformation efficiencies of both chromosomal and plasmid DNA. NT helps bacteria survive under adverse conditions and contributes to genetic diversity in bacteria. The present work describes the characterization of DprA from D. radiodurans and will add to the existing knowledge of DprA biology.


Asunto(s)
Deinococcus , Animales , Deinococcus/genética , Deinococcus/metabolismo , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Proteínas Bacterianas/metabolismo , Drosophila melanogaster , ADN/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
6.
mBio ; 13(6): e0174222, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36300930

RESUMEN

Filament temperature-sensitive mutant K (FtsK)/SpoIIIE family proteins are DNA translocases known as the fastest DNA motor proteins that use ATP for their movement on DNA. Most of the studies in single chromosome-containing bacteria have established the role of FtsK in chromosome dimer resolution (CDR), connecting the bacterial chromosome segregation process with cell division. Only limited reports, however, are available on the interdependent regulation of genome segregation and cell division in multipartite genome harboring (MGH) bacteria. In this study, for the first time, we report the characterization of FtsK from the radioresistant MGH bacterium Deinococcus radiodurans R1 (drFtsK). drFtsK shows the activity characteristics of a typical FtsK/SpoIIIE/Tra family. It stimulates the site-specific recombination catalyzed by Escherichia coli tyrosine recombinases. drFtsK interacts with various cell division and genome segregation proteins of D. radiodurans. Microscopic examination of different domain deletion mutants of this protein reveals alterations in cellular membrane architecture and nucleoid morphology. In vivo localization studies of drFtsK-RFP show that it forms multiple foci on nucleoid as well as on the membrane with maximum density on the septum. drFtsK coordinates its movement with nucleoid separation. The alignment of its foci shifts from old to new septum indicating its cellular dynamics with the FtsZ ring during the cell division process. Nearly, similar positional dynamicity of FtsK was observed in cells recovering from gamma radiation exposure. These results suggest that FtsK forms a part of chromosome segregation, cell envelope, and cell division machinery in D. radiodurans. IMPORTANCE Deinococcus radiodurans show extraordinary resistance to gamma radiation. It is polyploid and harbors a multipartite genome comprised of 2 chromosomes and 2 plasmids, packaged in a doughnut-shaped toroidal nucleoid. Very little is known about how the tightly packed genome is accurately segregated and the next divisional plane is determined. Filament temperature-sensitive mutant K (FtsK), a multifunctional protein, helps in pumping the septum-trapped DNA in several bacteria. Here, we characterized FtsK of D. radiodurans R1 (drFtsK) for the first time and showed it to be an active protein. The absence of drFtsK causes many defects in morphology at both cellular and nucleoid levels. The compact packaging of the deinococcal genome and cell membrane formation is hindered in ftsK mutants. In vivo drFtsK is dynamic, forms foci on both nucleoid and septum, and coordinates with FtsZ for the next cell division. Thus, drFtsK role in maintaining the normal genome phenotype and cell division in D. radiodurans is suggested.


Asunto(s)
Deinococcus , Proteínas de Escherichia coli , Deinococcus/genética , Deinococcus/metabolismo , Proteínas Bacterianas/metabolismo , División Celular , Plásmidos , Segregación Cromosómica , Escherichia coli/genética , Proteínas de la Membrana/metabolismo , Proteínas de Escherichia coli/metabolismo
7.
J Biomol Struct Dyn ; 40(3): 1246-1259, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32990194

RESUMEN

RqkA, a DNA damage responsive serine/threonine kinase, is characterized for its role in DNA repair and cell division in D. radiodurans. It has a unique combination of a kinase domain at N-terminus and a WD40 type domain at C-terminus joined through a linker. WD40 domain is comprised of eight ß-propeller repeats held together via 'tryptophan-docking motifs' and forming a typical 'velcro' closure structure. RqkA mutants lacking the WD40 region (hereafter referred to as WD mutant) could not complement RqkA loss in γ radiation resistance in D. radiodurans and lacked γ radiation-mediated activation of kinase activity in vivo. WD mutants failed to phosphorylate its cognate substrate (e.g. DrRecA) in surrogate E. coli cells. Unlike wild-type enzyme, the kinase activity of its WD40 mutants was not stimulated by pyrroloquinoline quinine (PQQ) indicating the role of the WD motifs in PQQ interaction and stimulation of its kinase activity. Together, results highlighted the importance of the WD40 domain in the regulation of RqkA kinase signaling functions in vivo, and thus, the role of WD40 domain in the regulation of any STPK is first time demonstrated in bacteria.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Deinococcus , Proteínas Bacterianas/metabolismo , Reparación del ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilación
8.
Res Microbiol ; 173(1-2): 103883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34624492

RESUMEN

The roles of Serine/Threonine protein kinases (STPKs) in bacterial physiology, including bacterial responses to nutritional stresses and under pathogenesis have been well documented. STPKs roles in bacterial cell cycle regulation and DNA damage response have not been much emphasized, possibly because the LexA/RecA type SOS response became the synonym to DNA damage response and cell cycle regulation in bacteria. This review summarizes current knowledge of STPKs genetics, domain organization, and their roles in DNA damage response and cell division regulation in bacteria.


Asunto(s)
Proteínas Bacterianas , Proteínas Serina-Treonina Quinasas , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular , Daño del ADN , Proteínas Serina-Treonina Quinasas/genética , Serina , Treonina/genética
9.
Front Cell Dev Biol ; 9: 636178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959605

RESUMEN

DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.

10.
J Bacteriol ; 203(15): e0016321, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031039

RESUMEN

In rod-shaped Gram-negative bacteria, FtsZ localization at midcell position is regulated by the gradient of MinCDE complex across the poles. In round-shaped bacteria, which lack predefined poles, the next plane of cell division is perpendicular to the previous plane, and determination of the FtsZ assembly site is still intriguing. Deinococcus radiodurans, a coccus bacterium, is characterized by its extraordinary resistance to DNA damage. DivIVA, a putative component of the Min system in this bacterium, interacts with cognate cell division and genome segregation proteins. Here, we report that deletion of a chromosomal copy of DivIVA was possible only when the wild-type copy of DivIVA was expressed in trans on a plasmid. However, deletion of the C-terminal domain (CTD) of DivIVA (CTD mutant) was possible but produced distinguishable phenotypes, like smaller cells, slower growth, and tilted septum orientation, in D. radiodurans. In trans expression of DivIVA in the CTD mutant could restore these features of the wild type. Interestingly, the overexpression of DivIVA led to delayed separation of tetrads from an octet state in both trans-complemented divIVA-mutant and wild-type cells. The CTD mutant showed upregulation of the yggS-divIVAN operon. Both the wild type and CTD mutant formed FtsZ foci; however, unlike wild type, the position of foci in the mutant cells was found to be away from conjectural midcell position in cocci. Notably, DivIVA-red fluorescent protein (DivIVA-RFP) localizes to the septum during cell division at the new division site. These results suggested that DivIVA is an essential protein in D. radiodurans, and its C-terminal domain plays an important role in the regulation of its expression and orientation of new septal growth in this bacterium. IMPORTANCE In rod-shaped Gram-negative bacteria, the midcell position for binary fission is relatively easy to model. In cocci that do not have predefined poles, the plane of next cell division is shown to be perpendicular to the previous plane. However, the molecular basis of perpendicularity is not known in cocci. The DivIVA protein of Deinococcus radiodurans, a coccus bacterium, physically interacts with the septum and establishes macromolecular interactions with genome segregation proteins through its N-terminal domain and with MinC through the C-terminal domain. Here, we have brought forth some evidence to suggest that DivIVA is essential for growth and plays an important role in cell polarity determination, and its C-terminal domain plays a crucial role in the growth of new septa in the correct orientation as well as in the regulation of DivIVA expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/citología , Deinococcus/metabolismo , Proteínas Bacterianas/genética , División Celular , Polaridad Celular , Deinococcus/genética , Regulación Bacteriana de la Expresión Génica , Operón , Fenotipo
11.
J Biol Chem ; 296: 100451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33626388

RESUMEN

Deinococcus radiodurans harbors a multipartite ploid genome system consisting of two chromosomes and two plasmids present in multiple copies. How these discrete genome elements are maintained and inherited is not well understood. PprA, a pleiotropic protein involved in radioresistance, has been characterized for its roles in DNA repair, genome segregation, and cell division in this bacterium. Here, we show that PprA regulates ploidy of chromosome I and II and inhibits the activity of drDnaA, the initiator protein in D. radiodurans. We found that pprA deletion resulted in an increased genomic content and ploidy of both the chromosomal elements. Expression of PprA in trans rescued the phenotypes of the pprA mutant. To understand the molecular mechanism underlying these phenotypes, we characterized drDnaA and drDnaB. As expected for an initiator protein, recombinant drDnaA showed sequence-specific interactions with the putative oriC sequence in chromosome I (oriCI). Both drDnaA and drDnaB showed ATPase activity, also typical of initiator proteins, but only drDnaB exhibited 5'→3' dsDNA helicase activity in vitro. drDnaA and drDnaB showed homotypic and heterotypic interactions with each other, which were perturbed by PprA. Interestingly, PprA has inhibited the ATPase activity of drDnaA but showed no effect on the activity of drDnaB. Regulation of chromosome copy number and inhibition of the initiator protein functions by PprA strongly suggest that it plays a role as a checkpoint regulator of the DNA replication initiation in D. radiodurans perhaps through its interaction with the replication initiation machinery.


Asunto(s)
Deinococcus/genética , Deinococcus/metabolismo , Proteínas Bacterianas/metabolismo , División Celular/genética , Segregación Cromosómica , Girasa de ADN/metabolismo , Reparación del ADN/genética , Replicación del ADN/genética , Genoma Bacteriano/genética , Plásmidos/genética , Ploidias , Dominios y Motivos de Interacción de Proteínas , Tolerancia a Radiación
12.
Microbiol Res ; 242: 126609, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33059113

RESUMEN

Deinococcus radiodurans, an extremophile, resistant to many abiotic stresses including ionizing radiation, has 2 type I topoisomerases (drTopo IA and drTopo IB) and one type II topoisomerase (DNA gyrase). The role of drTopo IB in guanine quadruplex DNA (G4 DNA) metabolism was demonstrated earlier in vitro. Here, we report that D. radiodurans cells lacking drTopo IB (ΔtopoIB) show sensitivity to G4 DNA binding drug (NMM) under normal growth conditions. The activity of G4 motif containing promoters like mutL and recQ was reduced in the presence of NMM in mutant cells. In mutant, the percentage of anucleate cells was more while the copy number of genome elements were less as compared to wild type. Protein-protein interaction studies showed that drTopo IB interacts with genome segregation and DNA replication initiation (DnaA) proteins. The typical patterns of cellular localization of GFP-PprA were affected in the mutant cells. Microscopic examination of D. radiodurans cells expressing drTopo IB-RFP showed its localization on nucleoid forming a streak parallel to the old division septum and perpendicular to newly formed septum. These results together suggest the role of drTopo IB in genome maintenance in this bacterium.


Asunto(s)
Segregación Cromosómica , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Proteínas Bacterianas/genética , División Celular , Girasa de ADN , ADN-Topoisomerasas de Tipo I/efectos de la radiación , ADN Bacteriano/genética , Deinococcus/efectos de la radiación , Farmacorresistencia Bacteriana , Escherichia coli/genética , G-Cuádruplex , Rayos gamma , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Genes Bacterianos , Genoma Bacteriano , Regiones Promotoras Genéticas , Tolerancia a Radiación
13.
Life Sci Alliance ; 4(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199509

RESUMEN

The mechanisms underlying multipartite genome maintenance and its functional significance in extraordinary radioresistance of Deinococcus radiodurans are not well understood. The sequences upstream to parAB operons in chrII (cisII) and MP (cisMP) could stabilize an otherwise, non-replicative colE1 plasmid, in D. radiodurans DnaA and cognate ParB proteins bound specifically with cisII and cisMP elements. The ΔcisII and ΔcisMP cells showed the reduced copy number of cognate replicons and radioresistance as compared with wild type. Fluorescent reporter-operator system inserted in chrI, chrII, and MP in wild type and cisII mutants showed the presence of all three replicons in wild-type cells. Although chrI was present in all the ΔcisII and ΔcisMP cells, nearly half of these cells had chrII and MP, respectively, and the other half had the reduced number of foci representing these replications. These results suggested that cisII and cisMP elements contain both origin of replication and parS-like functions and the secondary genome replicons (chrII and MP) are maintained independent of chrI and have roles in radioresistance of D. radiodurans.


Asunto(s)
Deinococcus/genética , Operón , Origen de Réplica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Clonación Molecular/métodos , ADN Primasa/genética , ADN Primasa/metabolismo , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Deinococcus/efectos de la radiación , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Plásmidos/genética , Plásmidos/metabolismo
14.
Plant Physiol Biochem ; 146: 112-123, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31739146

RESUMEN

Mitogen activated protein kinases (MAPKs) are known to play important functions in stress responses of plants. We have functionally characterized a MAPK, MusaMPK5 from banana and demonstrated its function in cold tolerance response of banana plants. Expression of MusaMPK5 showed positive response to cold, methyl-jasmonate and salicylic acid treatment. Transgenic banana plants harbouring PMusaMPK5::GUS after exposure to cold stress (8 °C) showed strong induction of GUS in cells surrounding central vascular cylinder of corm and cortical cells of pseudostem. Transgenic banana lines overexpressing MusaMPK5 were regenerated and four different transgenic lines were confirmed for T-DNA insertions by Southern blot and PCR analysis. In an in-vitro growth assay transgenic lines gained better shoot length and fresh weight during recovery from cold stress indicating improved cold tolerance ability of transgenic lines than control plants. Leaf discs of transgenic lines bleached less and retain lower MDA content than leaf discs of control plants after cold stress (4 °C and 8 °C). Cold stress tolerance analysis using two month old plants suggested that improved cold tolerance ability of transgenic lines might be associated with increased level of proline and reduced MDA content. MusaMPK5 gets localized in cytoplasm as observed in onion epidermal cells transiently overexpressing either MusaMPK5-GFP or MusaMPK5-GUS fusion protein. MusaMPK5 is a functional kinase as it autophosphorylate itself and phosphorylate myelin basic protein (MBP) in an in vitro reaction. Purified MusaMPK5 can phosphorylate NAC042 and SNAC67 transcription factors of banana which are important regulators of stress tolerance in banana plants.


Asunto(s)
Musa , Secuencia de Aminoácidos , Frío , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos , Plantas Modificadas Genéticamente , Estrés Fisiológico
15.
Cell Rep ; 29(8): 2450-2460.e5, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747612

RESUMEN

The bromodomain protein 4 (BRD4) is an atypical kinase and histone acetyl transferase (HAT) that binds to acetylated histones and contributes to chromatin remodeling and early transcriptional elongation. During transcription, BRD4 travels with the elongation complex. Since most alternative splicing events take place co-transcriptionally, we asked if BRD4 plays a role in regulating alternative splicing. We report that distinct patterns of alternative splicing are associated with a conditional deletion of BRD4 during thymocyte differentiation in vivo. Similarly, the depletion of BRD4 in T cell acute lymphoblastic leukemia (T-ALL) cells alters patterns of splicing. Most alternatively spliced events affected by BRD4 are exon skipping. Importantly, BRD4 interacts with components of the splicing machinery, as assessed by both immunoprecipitation (IP) and proximity ligation assays (PLAs), and co-localizes on chromatin with the splicing regulator, FUS. We propose that BRD4 contributes to patterns of alternative splicing through its interaction with the splicing machinery during transcription elongation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Timocitos/metabolismo , Factores de Transcripción/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Proteínas de Ciclo Celular/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Exones/genética , Humanos , Inmunoprecipitación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Transcripción/genética
16.
Microbiol Res ; 223-225: 22-32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178048

RESUMEN

The Deinococcus radiodurans multipartite genome consists of 2 chromosomes and 2 plasmids Its genome encodes 4 ParA and 4 ParB proteins on different replicons. Multiple sequence alignments of ParBs encoded on these genome elements showed that ParB of primary chromosome (ParB1) is close to chromosomal type ParB and is found to be different from ParBs encoded on chromosome II (ParB2) and megaplasmid (ParB3) elements. We observed that ParB1, ParB2 and ParB3 exist as dimer in solution and these proteins interact to self but not to its homologs in D. radiodurans, suggesting the specificity in ParBs dimerization. The parB1 deletion mutant showed slow growth under normal condition and relatively reduced resistance to γ-radiation as compared to wild type. The parB2 and parB3 mutants maintained without selection pressure showed loss of radioresistance, which was not observed when maintained with selection pressure. Nearly half of the populations of these mutants showed resistance to antibiotics marked to respective genome elements. Interestingly, all the parB mutants showed increased copy numbers of cognate genome element in cells maintained with antibiotics possibly due to arrest in genome segregation. These results suggested that ParB proteins encoded on multipartite genome system in D. radiodurans form homodimer and not heterodimer with other ParB homologs, and they independently regulate the segregation of respective genome elements. The roles of ParB1 proteins in normal as well as radiation stressed growth of this bacterium have also been ascertained.


Asunto(s)
Proteínas Bacterianas/genética , Deinococcus/genética , Genes Bacterianos/genética , Secuencia de Aminoácidos , Cromosomas Bacterianos/genética , Clonación Molecular , Deinococcus/efectos de la radiación , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Plásmidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Alineación de Secuencia , Eliminación de Secuencia
17.
J Bacteriol ; 201(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235513

RESUMEN

Guanine quadruplex (G4) DNA/RNA are secondary structures that regulate the various cellular processes in both eukaryotes and bacteria. Deinococcus radiodurans, a Gram-positive bacterium known for its extraordinary radioresistance, shows a genomewide occurrence of putative G4 DNA-forming motifs in its GC-rich genome. N-Methyl mesoporphyrin (NMM), a G4 DNA structure-stabilizing drug, did not affect bacterial growth under normal conditions but inhibited the postirradiation recovery of gamma-irradiated cells. Transcriptome sequencing analysis of cells treated with both radiation and NMM showed repression of gamma radiation-responsive gene expression, which was observed in the absence of NMM. Notably, this effect of NMM on the expression of housekeeping genes involved in other cellular processes was not observed. Stabilization of G4 DNA structures mapped at the upstream of recA and in the encoding region of DR_2199 had negatively affected promoter activity in vivo, DNA synthesis in vitro and protein translation in Escherichia coli host. These results suggested that G4 DNA plays an important role in DNA damage response and in the regulation of expression of the DNA repair proteins required for radioresistance in D. radioduransIMPORTANCEDeinococcus radiodurans can recover from extensive DNA damage caused by many genotoxic agents. It lacks LexA/RecA-mediated canonical SOS response. Therefore, the molecular mechanisms underlying the regulation of DNA damage response would be worth investigating in this bacterium. D. radiodurans genome is GC-rich and contains numerous islands of putative guanine quadruplex (G4) DNA structure-forming motifs. Here, we showed that in vivo stabilization of G4 DNA structures can impair DNA damage response processes in D. radiodurans Essential cellular processes such as transcription, DNA synthesis, and protein translation, which are also an integral part of the double-strand DNA break repair pathway, are affected by the arrest of G4 DNA structure dynamics. Thus, the role of DNA secondary structures in DNA damage response and radioresistance is demonstrated.


Asunto(s)
ADN/genética , Deinococcus/efectos de la radiación , G-Cuádruplex , Rayos gamma , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Genoma Bacteriano/efectos de la radiación , Deinococcus/genética
18.
Mol Microbiol ; 112(3): 854-865, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31162841

RESUMEN

The GC-rich genome of Deinococcus radiodurans contains a very high density of putative guanine quadruplex (G4) DNA motifs and its RecQ (drRecQ) was earlier characterized as a 3'→5' dsDNA helicase. We saw that N-Methyl mesoporphyrin IX (NMM), a G4 DNA binding drug affected normal growth as well as the gamma radiation resistance of the wild-type bacterium. Interestingly, NMM treatment and recQ deletion showed additive effect on normal growth but there was no effect of NMM on gamma radiation resistance of recQ mutant. The recombinant drRecQ showed ~400 times higher affinity to G4 DNA (Kd  = 11.74 ± 1.77 nM) as compared to dsDNA (Kd  = 4.88 ± 1.30 µM). drRecQ showed ATP independent helicase function on G4 DNA, which was higher than ATP-dependent helicase activity on dsDNA. Unlike wild-type cells that sparingly stained for G4 structure with Thioflavin T (ThT), recQ mutant showed very high-density of ThT fluorescence foci on DNA indicating an important role of drRecQ in regulation of G4 DNA structure dynamics in vivo. These results together suggested that drRecQ is an ATP independent G4 DNA helicase that plays an important role in the regulation of G4 DNA structure dynamics and its impact on radioresistance in D. radiodurans.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , Deinococcus/enzimología , Deinococcus/efectos de la radiación , Regulación Bacteriana de la Expresión Génica , RecQ Helicasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Deinococcus/genética , Deinococcus/crecimiento & desarrollo , G-Cuádruplex , Viabilidad Microbiana/efectos de la radiación , RecQ Helicasas/química , RecQ Helicasas/genética , Especificidad por Sustrato
19.
Biochem J ; 476(5): 909-930, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30804051

RESUMEN

Deinococcus radiodurans, an extremely radioresistant bacterium has a multipartite genome system and ploidy. Mechanisms underlying such types of bacterial genome maintenance and its role in extraordinary radioresistance are not known in this bacterium. Chromosome I (Chr I), chromosome II (Chr II) and megaplasmid (Mp) encode its own set of genome partitioning proteins. Here, we have characterized P-loop ATPases of Chr II (ParA2) and Mp (ParA3) and their roles in the maintenance of genome copies and extraordinary radioresistance. Purified ParA2 and ParA3 showed nearly similar polymerization kinetics and interaction patterns with DNA. Electron microscopic examination of purified proteins incubated with DNA showed polymerization on nicked circular dsDNA. ParA2 and ParA3 showed both homotypic and heterotypic interactions to each other, but not with ParA1 (ParA of Chr I). Similarly, ParA2 and ParA3 interacted with ParB2 and ParB3 but not with ParB1 in vivo ParB2 and ParB3 interaction with cis-elements located upstream to the corresponding parAB operon was found to be sequence-specific. Unlike single mutant of parA2 and parA3, their double mutant (ΔparA2ΔParA3) affected copy number of cognate genome elements and resistance to γ-radiation as well as hydrogen peroxide in this bacterium. These results suggested that ParA2 and ParA3 are DNA-binding ATPases producing higher order polymers on DNA and are functionally redundant in the maintenance of secondary genome elements in D. radiodurans The findings also suggest the involvement of secondary genome elements such as Chr II and Mp in the extraordinary radioresistance of D. radiodurans.


Asunto(s)
Proteínas Bacterianas , Cromosomas Bacterianos , ADN Bacteriano , Deinococcus , Plásmidos , Tolerancia a Radiación/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Plásmidos/genética , Plásmidos/metabolismo
20.
Plasmid ; 100: 6-13, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30261215

RESUMEN

The gene knockouts are mostly created using homologous recombination-based replacement of target gene(s) with the expressing cassette of selection marker gene(s). Here, we constructed a series of plasmids bearing the expressing cassettes of genes encoding different antibiotics markers like nptII (KanR), aadA (SpecR), cat (CmR) and aac(3) (GenR). D. radiodurans is a radioresistant Gram positive bacterium that does not support the independent maintenance of colE1 origin-based plasmids. Using these constructs, the disruption mutants of both single and multiple genes involved in segregation of secondary genome elements have been generated in this bacterium. Unlike single mutants, the double and triple mutants showed growth retardation under normal growth conditions and the synergistic effects with Topoisomerase II inhibitor on the growth of this bacterium. Thus, these plasmids could be useful in creating multiple deletions/disruptions in bacteria that do not support independent maintenance of colE1 origin-based plasmid.


Asunto(s)
Secuencia de Bases , Deinococcus/genética , Ingeniería Genética/métodos , Genoma Bacteriano , Plásmidos/química , Eliminación de Secuencia , Farmacorresistencia Bacteriana/genética , Genotipo , Recombinación Homóloga , Fenotipo , Plásmidos/metabolismo , Tolerancia a Radiación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...