Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 31(19): R1164-R1169, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34637723

RESUMEN

The science underpinning biodiversity's importance to human well-being seems to be taken up little by environmental decision makers. Since the 1950s, ecological, evolutionary and environmental research has pointed to the importance of biodiversity as a significant factor influencing the stability and functioning of population, community, eco- and Earth-systems and the environmental services they provide. Despite its prominence and the tremendous contributions to our understanding of the natural world, this field of research, which we term 'bio-functional ecology', seems not to have had the impact it should. Biotic impoverishment, the loss of biodiversity across all scales and across all taxa, continues to worsen. We suggest that redirecting ecology's emphasis on ecological stability to a focus on environmental risk could help bring bio-functional ecology research more into the environmental arena. Rather than managing biodiversity as an agent of ecological stability, biodiversity could be managed as a natural capital asset in a portfolio of social, human, produced and financial capital assets. This would allow using portfolio theory to identify options for minimizing environmental risk while ensuring human well-being. In this essay, we argue that environmental risk more accurately captures people's motivation to preserve and manage biodiversity than does ecological stability. This redirection from stability to risk may provide greater clarity for decision makers and people in general as to why biodiversity is fundamentally linked to human well-being. In doing so, we can help curb the currently unabated spread of biotic impoverishment across the biosphere.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecosistema , Humanos
2.
Ecol Evol ; 9(12): 6949-6958, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31380025

RESUMEN

The influence of temperature on diversity and ecosystem functioning is well studied; the converse however, that is, how biodiversity influences temperature, much less so. We manipulated freshwater algal species diversity in microbial microcosms to uncover how diversity influenced primary production, which is well documented in biodiversity research. We then also explored how visible-spectrum absorbance and the local thermal environment responded to biodiversity change. Variations in the local thermal environment, that is, in the temperature of the immediate surroundings of a community, are known to matter not only for the rate of ecosystem processes, but also for persistence of species assemblages and the very relationship between biodiversity and ecosystem functioning. In our microcosm experiment, we found a significant positive association between algal species richness and primary production, a negative association between primary production and visible-spectrum absorbance, and a positive association between visible-spectrum absorbance and the response of the local thermal environment (i.e., change in thermal infrared emittance over a unit time). These findings support an indirect effect of algal diversity on the local thermal environment pointing to a hitherto unrecognized biodiversity effect in which diversity has a predictable influence on local thermal environments.

3.
Science ; 358(6370): 1610-1614, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29269476

RESUMEN

International negotiations on climate change, along with recent upsurges in migration across the Mediterranean Sea, have highlighted the need to better understand the possible effects of climate change on human migration-in particular, across national borders. Here we examine how, in the recent past (2000-2014), weather variations in 103 source countries translated into asylum applications to the European Union, which averaged 351,000 per year in our sample. We find that temperatures that deviated from the moderate optimum (~20°C) increased asylum applications in a nonlinear fashion, which implies an accelerated increase under continued future warming. Holding everything else constant, asylum applications by the end of the century are predicted to increase, on average, by 28% (98,000 additional asylum applications per year) under representative concentration pathway (RCP) scenario 4.5 and by 188% (660,000 additional applications per year) under RCP 8.5 for the 21 climate models in the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...