Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 352: 141412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336035

RESUMEN

This study examined the multifaceted impacts of fluorene exposure on Tubifex tubifex, encompassing acute (survival analysis and behavioral responses) and subchronic exposure regimens (antioxidant enzyme response and histopathology), molecular docking studies, and generalized read-across analysis. Survival analysis revealed concentration-dependent increases in toxicity over varying time intervals, with LC50 values decreasing from 30.072 mg/L at 24 h to 12.365 mg/L at 96 h, emphasizing the time-sensitive and concentration-responsive nature of the stressor. Behavioral responses were both concentration- and duration-dependent. While Erratic Movement and Clumping Tendency exhibited earlier responses (within 24 h) at lower concentrations, the wrinkling effect and mucus secretion) exhibited delayed onset, suggesting intricate regulatory mechanisms underlying adaptability to environmental challenges; moreover, the wrinkling effect was consistently induced at higher concentrations, indicating greater sensitivity to the toxic effects of fluorene. With sublethal environmentally relevant concentrations-1.24 mg/l and 2.47 mg/L i.e., 10% and 20% 96 h, respectively-the antioxidant enzyme response (i.e., upregulation of SOD, CAT, and GST) with increasing fluorene concentration, revealing a nonlinear, hormetic response, suggested adaptive protection at lower doses but inhibition at higher concentrations. Histopathological examination indicated that higher fluorene concentrations caused cellular proliferation, inflammation, and severe tissue damage in the digestive tract and body wall. Molecular docking studies demonstrated robust interactions between fluorene and major stress biomarker enzymes, disrupting their functions and inducing oxidative stress. Interactions with cytochrome c oxidase suggested interference with cellular energy production. Generalized Read-Across (GenRA) analysis unveiled shared toxicity mechanisms among fluorene and its analogs, involving the formation of reactive epoxides and the influence of cytochrome P450 enzymes. The diverse functional groups of these analogs, particularly chlorine-containing compounds, were implicated in toxicity through lipid peroxidation and membrane damage. Adverse outcome pathways and broader consequences for aquatic ecosystem health are discussed.


Asunto(s)
Oligoquetos , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Ecosistema , Simulación del Acoplamiento Molecular , Biomarcadores/metabolismo , Fluorenos/toxicidad , Fluorenos/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
J Biomol Struct Dyn ; : 1-21, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37482789

RESUMEN

The novel coronavirus disease 2019 (Covid-19) outburst is still threatening global health. This highly contagious viral disease is caused by the infection of SARS-CoV-2 virus. Covid-19 and post-Covid-19 complications induce noteworthy mortality. Potential chemical hits and leads against SARS-CoV-2 for combating Covid-19 are urgently required. In the present study, a virtual-screening protocol was executed on potential Amaryllidaceae alkaloids from a pool of natural compound library against SARS-CoV-2 main protease (Mpro) and transmembrane serine protease (TMPRSS2). For the collected 1016 alkaloids from the curated library, initially, molecular docking using AutoDock Vina (ADV), and thereafter 100 ns molecular-dynamic (MD) simulation has been executed for the best top-ranked binding affinity compounds for both the viral and host proteins. Comprehensive intermolecular-binding interactions profile of Amaryllidaceae alkaloids suggested that phyto-compounds Galantamine, Lycorenine, and Neronine as potent modulators of SARS-CoV-2 Mpro and host TMPRSS2 protein. All atomistic long range 100 ns MD simulation studies of each top ranked complex in triplicates also illustrated strong binding affinity of three compounds towards Mpro and TMPRSS2. Identified compounds might be recommended as prospective anti-viral agents for future drug development selectively targeting the SARS-CoV-2 Mpro or blocking host TMPRSS2 receptor, subjected to pre-clinical and clinical assessment for a better understanding of in-vitro molecular interaction and in-vivo validation.Communicated by Ramaswamy H. Sarma.

3.
Semin Cancer Biol ; 67(Pt 1): 105-113, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31288067

RESUMEN

Transcription factors (TFs) have a key role in controlling the gene regulatory network that sustains explicit cell states in humans. However, an uncontrolled regulation of these genes potentially results in a wide range of diseases, including cancer. Genes of the SOX family are indeed crucial as deregulation of SOX family TFs can potentially lead to changes in cell fate as well as irregular cell growth. SOX TFs are a conserved group of transcriptional regulators that mediate DNA binding through a highly conserved high-mobility group (HMG) domain. Accumulating evidence demonstrates that cell fate and differentiation in major developmental processes are controlled by SOX TFs. Besides; numerous reports indicate that both up- and down-regulation of SOX TFs may induce cancer progression. In this review, we discuss the involvement of key TFs of SOX family in human cancers.


Asunto(s)
Carcinogénesis , Neoplasias/patología , Factores de Transcripción SOX/metabolismo , Animales , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Factores de Transcripción SOX/genética , Transducción de Señal
4.
Biochem J ; 475(6): 1075-1089, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29487166

RESUMEN

Oct4 and Sox2 regulate the expression of target genes such as Nanog, Fgf4, and Utf1, by binding to their respective regulatory motifs. Their functional cooperation is reflected in their ability to heterodimerize on adjacent cis regulatory motifs, the composite Sox/Oct motif. Given that Oct4 and Sox2 regulate many developmental genes, a quantitative analysis of their synergistic action on different Sox/Oct motifs would yield valuable insights into the mechanisms of early embryonic development. In the present study, we measured binding affinities of Oct4 and Sox2 to different Sox/Oct motifs using fluorescence correlation spectroscopy. We found that the synergistic binding interaction is driven mainly by the level of Sox2 in the case of the Fgf4 Sox/Oct motif. Taking into account Sox2 expression levels fluctuate more than Oct4, our finding provides an explanation on how Sox2 controls the segregation of the epiblast and primitive endoderm populations within the inner cell mass of the developing rodent blastocyst.


Asunto(s)
Blastocisto/metabolismo , Factores de Transcripción SOXB1/genética , Animales , Células CHO , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Cricetinae , Cricetulus , Embrión de Mamíferos , Endodermo/embriología , Endodermo/metabolismo , Femenino , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Embarazo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal/genética
5.
EMBO Rep ; 16(9): 1177-91, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26265007

RESUMEN

Embryonic stem cell (ESC) identity is orchestrated by co-operativity between the transcription factors (TFs) Sox2 and the class V POU-TF Oct4 at composite Sox/Oct motifs. Neural stem cells (NSCs) lack Oct4 but express Sox2 and class III POU-TFs Oct6, Brn1 and Brn2. This raises the question of how Sox2 interacts with POU-TFs to transcriptionally specify ESCs versus NSCs. Here, we show that Oct4 alone binds the Sox/Oct motif and the octamer-containing palindromic MORE equally well. Sox2 binding selectively increases the affinity of Oct4 for the Sox/Oct motif. In contrast, Oct6 binds preferentially to MORE and is unaffected by Sox2. ChIP-Seq in NSCs shows the MORE to be the most enriched motif for class III POU-TFs, including MORE subtypes, and that the Sox/Oct motif is not enriched. These results suggest that in NSCs, co-operativity between Sox2 and class III POU-TFs may not occur and that POU-TF-driven transcription uses predominantly the MORE cis architecture. Thus, distinct interactions between Sox2 and POU-TF subclasses distinguish pluripotent ESCs from multipotent NSCs, providing molecular insight into how Oct4 alone can convert NSCs to pluripotency.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células-Madre Neurales/metabolismo , Factores del Dominio POU/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Animales , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores del Dominio POU/genética , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética
6.
Stem Cells ; 31(2): 269-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23169531

RESUMEN

Transcription factors (TF) often bind in heterodimeric complexes with each TF recognizing a specific neighboring cis element in the regulatory region of the genome. Comprehension of this DNA motif grammar is opaque, yet recent developments have allowed the interrogation of genome-wide TF binding sites. We reasoned that within this data novel motif grammars could be identified that controlled distinct biological programs. For this purpose, we developed a novel motif-discovery tool termed fexcom that systematically interrogates ChIP-seq data to discover spatially constrained TF-TF composite motifs occurring over short DNA distances. We applied this to the extensive ChIP-seq data available from mouse embryonic stem cells (ESCs). In addition to the well-known and most prevalent sox-oct motif, we also discovered a novel constrained spacer motif for Esrrb and Sox2 with a gap of between 2 and 8 bps that Essrb and Sox2 cobind in a selective fashion. Through the use of knockdown experiments, we argue that the Esrrb-Sox2 complex is an arbiter of gene expression differences between ESCs and epiblast stem cells (EpiSC). A number of genes downregulated upon dual Esrrb/Sox2 knockdown (e.g., Klf4, Klf5, Jam2, Pecam1) are similarly downregulated in the ESC to EpiSC transition and contain the esrrb-sox motif. The prototypical Esrrb-Sox2 target gene, containing an esrrb-sox element conserved throughout eutherian and metatherian mammals, is Nr0b1. Through positive regulation of this transcriptional repressor, we argue the Esrrb-Sox2 complex promotes the ESC state through inhibition of the EpiSC transcriptional program and the same trio may also function to maintain trophoblast stem cells.


Asunto(s)
ADN/metabolismo , Células Madre Embrionarias/metabolismo , Estratos Germinativos/metabolismo , Receptores de Estrógenos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transcripción Genética , Algoritmos , Animales , Secuencia de Bases , Inmunoprecipitación de Cromatina , Receptor Nuclear Huérfano DAX-1/genética , Receptor Nuclear Huérfano DAX-1/metabolismo , ADN/genética , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/crecimiento & desarrollo , Factor 4 Similar a Kruppel , Ratones , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Receptores de Estrógenos/genética , Factores de Transcripción SOXB1/genética
7.
Biochem J ; 448(1): 21-33, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22909387

RESUMEN

Oct4 and Sox2 are two essential transcription factors that co-regulate target genes for the maintenance of pluripotency. However, it is unclear whether they interact prior to DNA binding or how the target sites are accessed in the nucleus. By generating fluorescent protein fusions of Oct4 and Sox2 that are functionally capable of producing iPSCs (induced pluripotent stem cells), we show that their interaction is dependent on the presence of cognate DNA-binding elements, based on diffusion time, complex formation and lifetime measurements. Through fluorescence correlation spectroscopy, the levels of Oct4 and Sox2 in the iPSCs were quantified in live cells and two diffusion coefficients, corresponding to free and loosely bound forms of the protein, were distinguished. Notably, the fraction of slow-diffusing molecules in the iPSCs was found to be elevated, similar to the profile in embryonic stem cells, probably due to a change in the nuclear milieu during reprogramming. Taken together, these findings have defined quantitatively the amount of proteins pertinent to the pluripotent state and revealed increased accessibility to the underlying DNA as a mechanism for Oct4 and Sox2 to find their target binding sites and interact, without prior formation of heterodimer complexes.


Asunto(s)
ADN/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Células CHO , Cricetinae , ADN Complementario/genética , Difusión , Ensayo de Cambio de Movilidad Electroforética , Fibroblastos/citología , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Inmunoprecipitación , Ratones , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...