Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 22(2): 642-663, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33147627

RESUMEN

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories. Contact:evbc@unj-jena.de.


Asunto(s)
COVID-19/prevención & control , Biología Computacional , SARS-CoV-2/aislamiento & purificación , Investigación Biomédica , COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Humanos , Pandemias , SARS-CoV-2/genética
2.
Nucleic Acids Res ; 49(D1): D412-D419, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33125078

RESUMEN

The Pfam database is a widely used resource for classifying protein sequences into families and domains. Since Pfam was last described in this journal, over 350 new families have been added in Pfam 33.1 and numerous improvements have been made to existing entries. To facilitate research on COVID-19, we have revised the Pfam entries that cover the SARS-CoV-2 proteome, and built new entries for regions that were not covered by Pfam. We have reintroduced Pfam-B which provides an automatically generated supplement to Pfam and contains 136 730 novel clusters of sequences that are not yet matched by a Pfam family. The new Pfam-B is based on a clustering by the MMseqs2 software. We have compared all of the regions in the RepeatsDB to those in Pfam and have started to use the results to build and refine Pfam repeat families. Pfam is freely available for browsing and download at http://pfam.xfam.org/.


Asunto(s)
Biología Computacional/estadística & datos numéricos , Bases de Datos de Proteínas , Proteínas/metabolismo , Proteoma/metabolismo , Animales , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Biología Computacional/métodos , Epidemias , Humanos , Internet , Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteoma/clasificación , Proteoma/genética , Secuencias Repetitivas de Aminoácido/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Análisis de Secuencia de Proteína/métodos
3.
Nucleic Acids Res ; 47(D1): D427-D432, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30357350

RESUMEN

The last few years have witnessed significant changes in Pfam (https://pfam.xfam.org). The number of families has grown substantially to a total of 17,929 in release 32.0. New additions have been coupled with efforts to improve existing families, including refinement of domain boundaries, their classification into Pfam clans, as well as their functional annotation. We recently began to collaborate with the RepeatsDB resource to improve the definition of tandem repeat families within Pfam. We carried out a significant comparison to the structural classification database, namely the Evolutionary Classification of Protein Domains (ECOD) that led to the creation of 825 new families based on their set of uncharacterized families (EUFs). Furthermore, we also connected Pfam entries to the Sequence Ontology (SO) through mapping of the Pfam type definitions to SO terms. Since Pfam has many community contributors, we recently enabled the linking between authorship of all Pfam entries with the corresponding authors' ORCID identifiers. This effectively permits authors to claim credit for their Pfam curation and link them to their ORCID record.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/clasificación , Anotación de Secuencia Molecular , Dominios Proteicos , Proteínas/química , Secuencias Repetitivas de Aminoácido
4.
Nucleic Acids Res ; 45(D1): D190-D199, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899635

RESUMEN

InterPro (http://www.ebi.ac.uk/interpro/) is a freely available database used to classify protein sequences into families and to predict the presence of important domains and sites. InterProScan is the underlying software that allows both protein and nucleic acid sequences to be searched against InterPro's predictive models, which are provided by its member databases. Here, we report recent developments with InterPro and its associated software, including the addition of two new databases (SFLD and CDD), and the functionality to include residue-level annotation and prediction of intrinsic disorder. These developments enrich the annotations provided by InterPro, increase the overall number of residues annotated and allow more specific functional inferences.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Dominios y Motivos de Interacción de Proteínas , Programas Informáticos , Humanos , Anotación de Secuencia Molecular , Filogenia
5.
Methods Mol Biol ; 1415: 153-76, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27115632

RESUMEN

Advances in DNA sequencing technologies have led to an increasing amount of protein sequence data being generated. Only a small fraction of this protein sequence data will have experimental annotation associated with them. Here, we describe a protocol for in silico homology-based annotation of large protein datasets that makes extensive use of manually curated collections of protein families. We focus on annotations provided by the Pfam database and suggest ways to identify family outliers and family variations. This protocol may be useful to people who are new to protein data analysis, or who are unfamiliar with the current computational tools that are available.


Asunto(s)
Anotación de Secuencia Molecular/métodos , Proteínas/genética , Análisis por Conglomerados , Simulación por Computador , Bases de Datos de Proteínas , Internet , Familia de Multigenes , Homología de Secuencia de Aminoácido
6.
Nucleic Acids Res ; 44(D1): D279-85, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26673716

RESUMEN

In the last two years the Pfam database (http://pfam.xfam.org) has undergone a substantial reorganisation to reduce the effort involved in making a release, thereby permitting more frequent releases. Arguably the most significant of these changes is that Pfam is now primarily based on the UniProtKB reference proteomes, with the counts of matched sequences and species reported on the website restricted to this smaller set. Building families on reference proteomes sequences brings greater stability, which decreases the amount of manual curation required to maintain them. It also reduces the number of sequences displayed on the website, whilst still providing access to many important model organisms. Matches to the full UniProtKB database are, however, still available and Pfam annotations for individual UniProtKB sequences can still be retrieved. Some Pfam entries (1.6%) which have no matches to reference proteomes remain; we are working with UniProt to see if sequences from them can be incorporated into reference proteomes. Pfam-B, the automatically-generated supplement to Pfam, has been removed. The current release (Pfam 29.0) includes 16 295 entries and 559 clans. The facility to view the relationship between families within a clan has been improved by the introduction of a new tool.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/clasificación , Proteoma/química , Alineación de Secuencia , Análisis de Secuencia de Proteína , Anotación de Secuencia Molecular
7.
Brief Bioinform ; 16(5): 865-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25614388

RESUMEN

Transport systems comprise roughly 10% of all proteins in a cell, playing critical roles in many processes. Improving and expanding their classification is an important goal that can affect studies ranging from comparative genomics to potential drug target searches. It is not surprising that different classification systems for transport proteins have arisen, be it within a specialized database, focused on this functional class of proteins, or as part of a broader classification system for all proteins. Two such databases are the Transporter Classification Database (TCDB) and the Protein family (Pfam) database. As part of a long-term endeavor to improve consistency between the two classification systems, we have compared transporter annotations in the two databases to understand the rationale for differences and to improve both systems. Differences sometimes reflect the fact that one database has a particular transporter family while the other does not. Differing family definitions and hierarchical organizations were reconciled, resulting in recognition of 69 Pfam 'Domains of Unknown Function', which proved to be transport protein families to be renamed using TCDB annotations. Of over 400 potential new Pfam families identified from TCDB, 10% have already been added to Pfam, and TCDB has created 60 new entries based on Pfam data. This work, for the first time, reveals the benefits of comprehensive database comparisons and explains the differences between Pfam and TCDB.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química
8.
Nucleic Acids Res ; 43(Database issue): D382-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25348407

RESUMEN

Genome3D (http://www.genome3d.eu) is a collaborative resource that provides predicted domain annotations and structural models for key sequences. Since introducing Genome3D in a previous NAR paper, we have substantially extended and improved the resource. We have annotated representatives from Pfam families to improve coverage of diverse sequences and added a fast sequence search to the website to allow users to find Genome3D-annotated sequences similar to their own. We have improved and extended the Genome3D data, enlarging the source data set from three model organisms to 10, and adding VIVACE, a resource new to Genome3D. We have analysed and updated Genome3D's SCOP/CATH mapping. Finally, we have improved the superposition tools, which now give users a more powerful interface for investigating similarities and differences between structural models.


Asunto(s)
Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Estructura Terciaria de Proteína , Algoritmos , Genómica , Internet , Modelos Moleculares , Estructura Terciaria de Proteína/genética , Análisis de Secuencia de Proteína
9.
Nucleic Acids Res ; 42(Database issue): D222-30, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24288371

RESUMEN

Pfam, available via servers in the UK (http://pfam.sanger.ac.uk/) and the USA (http://pfam.janelia.org/), is a widely used database of protein families, containing 14 831 manually curated entries in the current release, version 27.0. Since the last update article 2 years ago, we have generated 1182 new families and maintained sequence coverage of the UniProt Knowledgebase (UniProtKB) at nearly 80%, despite a 50% increase in the size of the underlying sequence database. Since our 2012 article describing Pfam, we have also undertaken a comprehensive review of the features that are provided by Pfam over and above the basic family data. For each feature, we determined the relevance, computational burden, usage statistics and the functionality of the feature in a website context. As a consequence of this review, we have removed some features, enhanced others and developed new ones to meet the changing demands of computational biology. Here, we describe the changes to Pfam content. Notably, we now provide family alignments based on four different representative proteome sequence data sets and a new interactive DNA search interface. We also discuss the mapping between Pfam and known 3D structures.


Asunto(s)
Bases de Datos de Proteínas , Alineación de Secuencia , Análisis de Secuencia de Proteína , Internet , Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica , Proteínas/química , Proteínas/clasificación , Proteínas/genética , Proteoma/química , Análisis de Secuencia de ADN
10.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 11): 2186-93, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24189229

RESUMEN

High-resolution structural knowledge is key to understanding how proteins function at the molecular level. The number of entries in the Protein Data Bank (PDB), the repository of all publicly available protein structures, continues to increase, with more than 8000 structures released in 2012 alone. The authors of this article have studied how structural coverage of the protein-sequence space has changed over time by monitoring the number of Pfam families that acquired their first representative structure each year from 1976 to 2012. Twenty years ago, for every 100 new PDB entries released, an estimated 20 Pfam families acquired their first structure. By 2012, this decreased to only about five families per 100 structures. The reasons behind the slower pace at which previously uncharacterized families are being structurally covered were investigated. It was found that although more than 50% of current Pfam families are still without a structural representative, this set is enriched in families that are small, functionally uncharacterized or rich in problem features such as intrinsically disordered and transmembrane regions. While these are important constraints, the reasons why it may not yet be time to give up the pursuit of a targeted but more comprehensive structural coverage of the protein-sequence space are discussed.


Asunto(s)
Bases de Datos de Proteínas , Familia de Multigenes , Complejos Multiproteicos/química , Multimerización de Proteína , Secuencia de Aminoácidos/genética , Cristalografía por Rayos X , Bases de Datos de Proteínas/normas , Bases de Datos de Proteínas/tendencias , Humanos , Modelos Moleculares , Complejos Multiproteicos/genética , Multimerización de Proteína/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
11.
Database (Oxford) ; 2013: bat023, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23603847

RESUMEN

It is a worthy goal to completely characterize all human proteins in terms of their domains. Here, using the Pfam database, we asked how far we have progressed in this endeavour. Ninety per cent of proteins in the human proteome matched at least one of 5494 manually curated Pfam-A families. In contrast, human residue coverage by Pfam-A families was <45%, with 9418 automatically generated Pfam-B families adding a further 10%. Even after excluding predicted signal peptide regions and short regions (<50 consecutive residues) unlikely to harbour new families, for ∼38% of the human protein residues, there was no information in Pfam about conservation and evolutionary relationship with other protein regions. This uncovered portion of the human proteome was found to be distributed over almost 25 000 distinct protein regions. Comparison with proteins in the UniProtKB database suggested that the human regions that exhibited similarity to thousands of other sequences were often either divergent elements or N- or C-terminal extensions of existing families. Thirty-four per cent of regions, on the other hand, matched fewer than 100 sequences in UniProtKB. Most of these did not appear to share any relationship with existing Pfam-A families, suggesting that thousands of new families would need to be generated to cover them. Also, these latter regions were particularly rich in amino acid compositional bias such as the one associated with intrinsic disorder. This could represent a significant obstacle toward their inclusion into new Pfam families. Based on these observations, a major focus for increasing Pfam coverage of the human proteome will be to improve the definition of existing families. New families will also be built, prioritizing those that have been experimentally functionally characterized. Database URL: http://pfam.sanger.ac.uk/


Asunto(s)
Bases de Datos de Proteínas , Proteínas/clasificación , Proteoma , Homología de Secuencia de Aminoácido , Escherichia coli/química , Humanos , Estructura Terciaria de Proteína , Proteínas/química , Saccharomyces cerevisiae/química
12.
Nucleic Acids Res ; 41(12): e121, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23598997

RESUMEN

Detection of protein homology via sequence similarity has important applications in biology, from protein structure and function prediction to reconstruction of phylogenies. Although current methods for aligning protein sequences are powerful, challenges remain, including problems with homologous overextension of alignments and with regions under convergent evolution. Here, we test the ability of the profile hidden Markov model method HMMER3 to correctly assign homologous sequences to >13,000 manually curated families from the Pfam database. We identify problem families using protein regions that match two or more Pfam families not currently annotated as related in Pfam. We find that HMMER3 E-value estimates seem to be less accurate for families that feature periodic patterns of compositional bias, such as the ones typically observed in coiled-coils. These results support the continued use of manually curated inclusion thresholds in the Pfam database, especially on the subset of families that have been identified as problematic in experiments such as these. They also highlight the need for developing new methods that can correct for this particular type of compositional bias.


Asunto(s)
Análisis de Secuencia de Proteína/métodos , Homología de Secuencia de Aminoácido , Evolución Molecular , Cadenas de Markov , Proteínas de la Membrana/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/clasificación , Alineación de Secuencia
13.
Nucleic Acids Res ; 40(Database issue): D290-301, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22127870

RESUMEN

Pfam is a widely used database of protein families, currently containing more than 13,000 manually curated protein families as of release 26.0. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/). Here, we report on changes that have occurred since our 2010 NAR paper (release 24.0). Over the last 2 years, we have generated 1840 new families and increased coverage of the UniProt Knowledgebase (UniProtKB) to nearly 80%. Notably, we have taken the step of opening up the annotation of our families to the Wikipedia community, by linking Pfam families to relevant Wikipedia pages and encouraging the Pfam and Wikipedia communities to improve and expand those pages. We continue to improve the Pfam website and add new visualizations, such as the 'sunburst' representation of taxonomic distribution of families. In this work we additionally address two topics that will be of particular interest to the Pfam community. First, we explain the definition and use of family-specific, manually curated gathering thresholds. Second, we discuss some of the features of domains of unknown function (also known as DUFs), which constitute a rapidly growing class of families within Pfam.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/clasificación , Enciclopedias como Asunto , Internet , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
14.
Nucleic Acids Res ; 38(Database issue): D211-22, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19920124

RESUMEN

Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Secuencia de Aminoácidos , Animales , Biología Computacional/tendencias , Genoma Arqueal , Genoma Fúngico , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Programas Informáticos
15.
Nucleic Acids Res ; 37(Database issue): D211-5, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18940856

RESUMEN

The InterPro database (http://www.ebi.ac.uk/interpro/) integrates together predictive models or 'signatures' representing protein domains, families and functional sites from multiple, diverse source databases: Gene3D, PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY and TIGRFAMs. Integration is performed manually and approximately half of the total approximately 58,000 signatures available in the source databases belong to an InterPro entry. Recently, we have started to also display the remaining un-integrated signatures via our web interface. Other developments include the provision of non-signature data, such as structural data, in new XML files on our FTP site, as well as the inclusion of matchless UniProtKB proteins in the existing match XML files. The web interface has been extended and now links out to the ADAN predicted protein-protein interaction database and the SPICE and Dasty viewers. The latest public release (v18.0) covers 79.8% of UniProtKB (v14.1) and consists of 16 549 entries. InterPro data may be accessed either via the web address above, via web services, by downloading files by anonymous FTP or by using the InterProScan search software (http://www.ebi.ac.uk/Tools/InterProScan/).


Asunto(s)
Bases de Datos de Proteínas , Análisis de Secuencia de Proteína , Proteínas/química , Proteínas/clasificación , Integración de Sistemas
16.
Nucleic Acids Res ; 36(Database issue): D281-8, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18039703

RESUMEN

Pfam is a comprehensive collection of protein domains and families, represented as multiple sequence alignments and as profile hidden Markov models. The current release of Pfam (22.0) contains 9318 protein families. Pfam is now based not only on the UniProtKB sequence database, but also on NCBI GenPept and on sequences from selected metagenomics projects. Pfam is available on the web from the consortium members using a new, consistent and improved website design in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/), as well as from mirror sites in France (http://pfam.jouy.inra.fr/) and South Korea (http://pfam.ccbb.re.kr/).


Asunto(s)
Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Proteínas/clasificación , Animales , Genómica , Internet , Proteínas/genética , Alineación de Secuencia , Análisis de Secuencia de Proteína , Interfaz Usuario-Computador
17.
Methods Mol Biol ; 396: 43-58, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18025685

RESUMEN

The constant deluge of genome sequencing data means that annotating, classifying, and comparing proteins or proteomes can seam like an endless task. Furthermore, discovering and accessing such data is fundamental to biologists. There are, however, databases that perform these tasks. Pfam, a protein families database, is one such database. In this chapter, the use of the web interface to Pfam and the resources provided (annotation, sequence alignments, phylogenetic trees, profile hidden Markov models [HMMs]) are described. The exploitation of tools for searching sequences against the library of Pfam HMMs, searching for domain combinations, searching by taxonomy, browsing proteomes, and comparing proteomes are outlined in detail.


Asunto(s)
Proteínas/química , Proteómica , Cadenas de Markov , Filogenia , Especificidad de la Especie
18.
BMC Bioinformatics ; 8: 298, 2007 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-17688688

RESUMEN

BACKGROUND: Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families (<0.5%) have had the residues responsible for catalysis determined. To increase the active site annotations in the Pfam database, we have developed a strict set of rules, chosen to reduce the rate of false positives, which enable the transfer of experimentally determined active site residue data to other sequences within the same Pfam family. DESCRIPTION: We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives. CONCLUSION: We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation.


Asunto(s)
Bases de Datos de Proteínas , Secuencia de Aminoácidos , Sitios de Unión , Bases de Datos de Proteínas/tendencias , Datos de Secuencia Molecular , Valor Predictivo de las Pruebas , Alineación de Secuencia/métodos , Alineación de Secuencia/tendencias , Homología de Secuencia de Aminoácido , Diseño de Software
19.
Nucleic Acids Res ; 35(Database issue): D224-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17202162

RESUMEN

InterPro is an integrated resource for protein families, domains and functional sites, which integrates the following protein signature databases: PROSITE, PRINTS, ProDom, Pfam, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D and PANTHER. The latter two new member databases have been integrated since the last publication in this journal. There have been several new developments in InterPro, including an additional reading field, new database links, extensions to the web interface and additional match XML files. InterPro has always provided matches to UniProtKB proteins on the website and in the match XML file on the FTP site. Additional matches to proteins in UniParc (UniProt archive) are now available for download in the new match XML files only. The latest InterPro release (13.0) contains more than 13 000 entries, covering over 78% of all proteins in UniProtKB. The database is available for text- and sequence-based searches via a webserver (http://www.ebi.ac.uk/interpro), and for download by anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro). The InterProScan search tool is now also available via a web service at http://www.ebi.ac.uk/Tools/webservices/WSInterProScan.html.


Asunto(s)
Bases de Datos de Proteínas , Internet , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/clasificación , Proteínas/fisiología , Análisis de Secuencia de Proteína , Integración de Sistemas , Interfaz Usuario-Computador
20.
Nucleic Acids Res ; 34(Database issue): D247-51, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16381856

RESUMEN

Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://pfam.cgb.ki.se/).


Asunto(s)
Bases de Datos de Proteínas , Proteínas/clasificación , Gráficos por Computador , Internet , Cadenas de Markov , Estructura Terciaria de Proteína , Proteínas/química , Alineación de Secuencia , Programas Informáticos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...