Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(28): 16481-16491, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601182

RESUMEN

Differences between female and male immunity may contribute to variations in response to infections and predisposition to autoimmunity. We previously reported that neutrophils from reproductive-age males are more immature and less activated than their female counterparts. To further characterize the mechanisms that drive differential neutrophil phenotypes, we performed RNA sequencing on circulating neutrophils from healthy adult females and males. Female neutrophils displayed significant up-regulation of type I IFN (IFN)-stimulated genes (ISGs). Single-cell RNA-sequencing analysis indicated that these differences are neutrophil specific, driven by a distinct neutrophil subset and related to maturation status. Neutrophil hyperresponsiveness to type I IFNs promoted enhanced responses to Toll-like receptor agonists. Neutrophils from young adult males had significantly increased mitochondrial metabolism compared to those from females and this was modulated by estradiol. Assessment of ISGs and neutrophil maturation genes in Klinefelter syndrome (47, XXY) males and in prepubescent children supported that differences in neutrophil phenotype between adult male and female neutrophils are hormonally driven and not explained by X chromosome gene dosage. Our results indicate that there are distinct sex differences in neutrophil biology related to responses to type I IFNs, immunometabolism, and maturation status that may have prominent functional and pathogenic implications.


Asunto(s)
Interferón Tipo I/inmunología , Neutrófilos/inmunología , Adulto , Femenino , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/inmunología , Síndrome de Klinefelter/metabolismo , Masculino , Factores Sexuales , Adulto Joven
2.
Proc Natl Acad Sci U S A ; 116(50): 25222-25228, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31754025

RESUMEN

Neutrophil dysregulation is implicated in the pathogenesis of systemic lupus erythematosus (SLE). SLE is characterized by elevated levels of a pathogenic neutrophil subset known as low-density granulocytes (LDGs). The origin and phenotypic, functional, and pathogenic heterogeneity of LDGs remain to be systematically determined. Transcriptomics and epigenetic assessment of lupus LDGs, autologous normal-density neutrophils, and healthy control neutrophils was performed by bulk and single-cell RNA sequencing and assay for transposase-accessible chromatin sequencing. Functional readouts were compared among neutrophil subsets. SLE LDGs display significant transcriptional and epigenetic heterogeneity and comprise 2 subpopulations of intermediate-mature and immature neutrophils, with different degrees of chromatin accessibility and differences in transcription factor motif analysis. Differences in neutrophil extracellular trap (NET) formation, oxidized mitochondrial DNA release, chemotaxis, phagocytosis, degranulation, ability to harm the endothelium, and responses to type I interferon (IFN) stimulation are evident among LDG subsets. Compared with other immune cell subsets, LDGs display the highest expression of IFN-inducible genes. Distinct LDG subsets correlate with specific clinical features of lupus and with the presence and severity of coronary artery disease. Phenotypic, functional, and pathogenic neutrophil heterogeneity are prevalent in SLE and may promote immune dysregulation and prominent vascular damage characteristic of this disease.


Asunto(s)
Lupus Eritematoso Sistémico/genética , Neutrófilos/metabolismo , Adulto , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Epigénesis Genética , Trampas Extracelulares/metabolismo , Femenino , Granulocitos/metabolismo , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ARN , Transcriptoma
3.
Ann Rheum Dis ; 78(7): 957-966, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31040119

RESUMEN

OBJECTIVES: The presence of proinflammatory low-density granulocytes (LDG) has been demonstrated in autoimmune and infectious diseases. Recently, regulatory neutrophilic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) were identified in systemic lupus erythematosus (SLE). Because LDG and PMN-MDSC share a similar phenotype with contrasting functional effects, we explored these cells in a cohort of patients with SLE. METHODS: LDG and normal-density granulocytes (NDG) were isolated from fresh blood of healthy donors (HD) and patients with SLE. Associations between LDG and clinical manifestations were analysed. Multicolor flow cytometry and confocal imaging were performed to immunophenotype the cells. The ability of LDG and NDG to suppress T cell function and induce cytokine production was quantified. RESULTS: LDG prevalence was elevated in SLE versus HD, associated with the interferon (IFN) 21-gene signature and disease activity. Also, the LDG-to-lymphocyte ratio associated better with SLE disease activity index than neutrophil-to-lymphocyte ratio. SLE LDG exhibited significantly heightened surface expression of various activation markers and also of lectin-like oxidised low-density lipoprotein receptor-1, previously described to be associated with PMN-MDSC. Supernatants from SLE LDG did not restrict HD CD4+ T cell proliferation in an arginase-dependent manner, suggesting LDG are not immunosuppressive. SLE LDG supernatants induced proinflammatory cytokine production (IFN gamma, tumour necrosis factor alpha and lymphotoxin alpha) from CD4+ T cells. CONCLUSIONS: Based on our results, SLE LDG display an activated phenotype, exert proinflammatory effects on T cells and do not exhibit MDSC function. These results support the concept that LDG represent a distinct proinflammatory subset in SLE with pathogenic potential, at least in part, through their ability to activate type 1 helper responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Granulocitos/inmunología , Lupus Eritematoso Sistémico/inmunología , Neutrófilos/inmunología , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Proliferación Celular , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación , Lupus Eritematoso Sistémico/sangre , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
4.
JCI Insight ; 3(23)2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30518690

RESUMEN

The peptidylarginine deiminases PAD2 and PAD4 are implicated in the pathogenesis of several autoimmune diseases. PAD4 may be pathogenic in systemic lupus erythematosus (SLE) through its role in neutrophil extracellular trap (NET) formation that promotes autoantigen externalization, immune dysregulation, and organ damage. The role of this enzyme in mouse models of autoimmunity remains unclear, as pan-PAD chemical inhibitors improve clinical phenotype, whereas PAD4-KO models have given conflicting results. The role of PAD2 in SLE has not been investigated. The differential roles of PAD2 and PAD4 in TLR-7-dependent lupus autoimmunity were examined. Padi4-/- displayed decreased autoantibodies, type I IFN responses, immune cell activation, vascular dysfunction, and NET immunogenicity. Padi2-/- mice showed abrogation of Th subset polarization, with some disease manifestations reduced compared with WT but to a lesser extent than Padi4-/- mice. RNA sequencing analysis revealed distinct modulation of immune-related pathways in PAD-KO lymphoid organs. Human T cells express both PADs and, when exposed to either PAD2 or PAD4 inhibitors, displayed abrogation of Th1 polarization. These results suggest that targeting PAD2 and/or PAD4 activity modulates dysregulated TLR-7-dependent immune responses in lupus through differential effects of innate and adaptive immunity. Compounds that target PADs may have potential therapeutic roles in T cell-mediated diseases.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunidad Innata/inmunología , Lupus Eritematoso Sistémico/inmunología , Desiminasas de la Arginina Proteica/inmunología , Desiminasas de la Arginina Proteica/metabolismo , Receptor Toll-Like 7/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Trampas Extracelulares , Femenino , Regulación de la Expresión Génica , Histonas , Humanos , Hidrolasas/genética , Hidrolasas/inmunología , Hidrolasas/metabolismo , Inflamación , Interferón Tipo I , Ratones , Ratones Noqueados , Arginina Deiminasa Proteína-Tipo 2 , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células TH1 , Células Th17 , Transcriptoma
5.
Ann Rheum Dis ; 77(12): 1825-1833, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30131320

RESUMEN

OBJECTIVES: Pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome is characterised by flares of sterile arthritis with neutrophil infiltrate and the overproduction of interleukin (IL)-1ß. The purpose of this study was to elucidate the potential role of neutrophil subsets and neutrophil extracellular traps (NET) in the pathogenesis of PAPA. METHODS: Neutrophils and low-density granulocytes (LDG) were quantified by flow cytometry. Circulating NETs were measured by ELISA and PAPA serum was tested for the ability to degrade NETs. The capacity of NETs from PAPA neutrophils to activate macrophages was assessed. Skin biopsies were analysed for NETs and neutrophil gene signatures. RESULTS: Circulating LDGs are elevated in PAPA subjects. PAPA neutrophils and LDGs display enhanced NET formation compared with control neutrophils. PAPA sera exhibit impaired NET degradation and this is corrected with exogenous DNase1. Recombinant human IL-1ß induces NET formation in PAPA neutrophils but not healthy control neutrophils. NET formation in healthy control neutrophils is induced by PAPA serum and this effect is inhibited by the IL-1 receptor antagonist, anakinra. NETs from PAPA neutrophils and LDGs stimulate IL-6 release in healthy control macrophages. NETs are detected in skin biopsies of patients with PAPA syndrome in association with increased tissue IL-1ß, IL-8 and IL-17. Furthermore, LDG gene signatures are detected in PAPA skin. CONCLUSIONS: PAPA syndrome is characterised by an imbalance of NET formation and degradation that may enhance the half-life of these structures in vivo, promoting inflammation. Anakinra ameliorates NET formation in PAPA and this finding supports a role for IL-1 signalling in exacerbated neutrophil responses in this disease. The study also highlights other inflammatory pathways potentially pathogenic in PAPA, including IL-17 and IL-6, and these results may help guide new therapeutic approaches in this severe and often treatment-refractory condition.


Asunto(s)
Acné Vulgar/inmunología , Artritis Infecciosa/inmunología , Trampas Extracelulares/inmunología , Neutrófilos/inmunología , Piodermia Gangrenosa/inmunología , Acné Vulgar/metabolismo , Adulto , Artritis Infecciosa/metabolismo , Trampas Extracelulares/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Piodermia Gangrenosa/metabolismo
6.
JCI Insight ; 3(8)2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29669944

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is associated with enhanced risk of atherosclerotic cardiovascular disease not explained by Framingham risk score (FRS). Immune dysregulation associated to a distinct subset of lupus proinflammatory neutrophils (low density granulocytes; LDGs) may play key roles in conferring enhanced CV risk. This study assessed if lupus LDGs are associated with in vivo vascular dysfunction and inflammation and coronary plaque. METHODS: SLE subjects and healthy controls underwent multimodal phenotyping of vascular disease by quantifying vascular inflammation (18F-fluorodeoxyglucose-PET/CT [18F-FDG-PET/CT]), arterial dysfunction (EndoPAT and cardio-ankle vascular index), and coronary plaque burden (coronary CT angiography). LDGs were quantified by flow cytometry. Cholesterol efflux capacity was measured in high-density lipoprotein-exposed (HDL-exposed) radioactively labeled cell lines. Whole blood RNA sequencing was performed to assess associations between transcriptomic profiles and vascular phenotype. RESULTS: Vascular inflammation, arterial stiffness, and noncalcified plaque burden (NCB) were increased in SLE compared with controls even after adjustment for traditional risk factors. In SLE, NCB directly associated with LDGs and associated negatively with cholesterol efflux capacity in fully adjusted models. A neutrophil gene signature reflective of the most upregulated genes in lupus LDGs associated with vascular inflammation and NCB. CONCLUSION: Individuals with SLE demonstrate vascular inflammation, arterial dysfunction, and NCB, which may explain the higher reported risk for acute coronary syndromes. The association of LDGs and neutrophil genes with vascular disease supports the hypothesis that distinct neutrophil subsets contribute to vascular damage and unstable coronary plaque in SLE. Results also support previous observations that neutrophils may disrupt HDL function and thereby promote atherogenesis. TRIAL REGISTRATION: Clinicaltrials.gov NCT00001372FUNDING. Intramural Research Program NIAMS/NIH (ZIA AR041199) and Lupus Research Institute.


Asunto(s)
Aterosclerosis/inmunología , Enfermedad de la Arteria Coronaria/inmunología , Inflamación/inmunología , Lupus Eritematoso Sistémico/inmunología , Neutrófilos/inmunología , Adulto , Aterosclerosis/complicaciones , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/patología , Estudios Transversales , Femenino , Voluntarios Sanos , Humanos , Inflamación/complicaciones , Inflamación/patología , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Fenotipo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Factores de Riesgo , Análisis de Secuencia de ARN/métodos
7.
Clin Immunol ; 185: 59-73, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-27519955

RESUMEN

Nephritis is one of the most severe complications of systemic lupus erythematosus (SLE). One key characteristic of lupus nephritis (LN) is the deposition of immune complexes containing nucleic acids and/or proteins binding to nucleic acids and autoantibodies recognizing these molecules. A variety of cell death processes are implicated in the generation and externalization of modified nuclear autoantigens and in the development of LN. Among these processes, apoptosis, primary and secondary necrosis, NETosis, necroptosis, pyroptosis, and autophagy have been proposed to play roles in tissue damage and immune dysregulation. Cell death occurs in healthy individuals during conditions of homeostasis yet autoimmunity does not develop, at least in part, because of rapid clearance of dying cells. In SLE, accelerated cell death combined with a clearance deficiency may lead to the accumulation and externalization of nuclear autoantigens and to autoantibody production. In addition, specific types of cell death may modify autoantigens and alter their immunogenicity. These modified molecules may then become novel targets of the immune system and promote autoimmune responses in predisposed hosts. In this review, we examine various cell death pathways and discuss how enhanced cell death, impaired clearance, and post-translational modifications of proteins could contribute to the development of lupus nephritis.


Asunto(s)
Muerte Celular , Lupus Eritematoso Sistémico/patología , Animales , Humanos , Lupus Eritematoso Sistémico/etiología
8.
Proc Natl Acad Sci U S A ; 112(17): 5455-60, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25870276

RESUMEN

Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors.


Asunto(s)
Antiinflamatorios , Benzaldehídos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/antagonistas & inhibidores , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Benzaldehídos/química , Benzaldehídos/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Interleucina-8/genética , Interleucina-8/inmunología , Ratones , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 1/genética , Receptor Toll-Like 1/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 6/genética , Receptor Toll-Like 6/inmunología
9.
Nature ; 497(7450): 498-502, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23636320

RESUMEN

There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4(-/-) mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)-a potent, well-tolerated, synthetic TLR4 antagonist-blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.


Asunto(s)
Antivirales/farmacología , Disacáridos/farmacología , Disacáridos/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Fosfatos de Azúcar/farmacología , Fosfatos de Azúcar/uso terapéutico , Receptor Toll-Like 4/antagonistas & inhibidores , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Animales , Antivirales/uso terapéutico , Citocinas/genética , Citocinas/inmunología , Disacáridos/metabolismo , Femenino , Ligandos , Receptores de Lipopolisacáridos/metabolismo , Antígeno 96 de los Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Fosfatos de Azúcar/metabolismo , Análisis de Supervivencia , Factores de Tiempo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/inmunología
10.
Infect Immun ; 81(3): 862-75, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23297387

RESUMEN

The group A streptococcus (GAS) is a strict human pathogen responsible for a wide spectrum of diseases. Although GAS genome sequences are available, functional genomic analyses have been limited. We developed a mariner-based transposon, osKaR, designed to perform Transposon-Site Hybridization (TraSH) in GAS and successfully tested its use in several invasive serotypes. A complex osKaR mutant library in M1T1 GAS strain 5448 was subjected to negative selection in human blood to identify genes important for GAS fitness in this clinically relevant environment. Mutants underrepresented after growth in blood (output pool) compared to growth in rich media (input pool) were identified using DNA microarray hybridization of transposon-specific tags en masse. Using blood from three different donors, we identified 81 genes that met our criteria for reduced fitness in blood from at least two individuals. Genes known to play a role in survival of GAS in blood were found, including those encoding the virulence regulator Mga (mga), the peroxide response regulator PerR (perR), and the RofA-like regulator Ralp-3 (ralp3). We also identified genes previously reported for their contribution to sepsis in other pathogens, such as de novo nucleotide synthesis (purD, purA, pyrB, carA, carB, guaB), sugar metabolism (scrB, fruA), zinc uptake (adcC), and transcriptional regulation (cpsY). To validate our findings, independent mutants with mutations in 10 different genes identified in our screen were confirmed to be defective for survival in blood bactericidal assays. Overall, this work represents the first use of TraSH in GAS to identify potential virulence genes.


Asunto(s)
Sangre/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano/genética , Streptococcus pyogenes/genética , Mapeo Cromosómico , Cromosomas Bacterianos , Aptitud Genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Mutagénesis Insercional , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA