Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 26(4): e16617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558266

RESUMEN

Sunlight penetrates the ice surfaces of glaciers and ice sheets, forming a water-bearing porous ice matrix known as the weathering crust. This crust is home to a significant microbial community. Despite the potential implications of microbial processes in the weathering crust for glacial melting, biogeochemical cycles, and downstream ecosystems, there have been few explorations of its microbial communities. In our study, we used 16S rRNA gene sequencing and shotgun metagenomics of a Svalbard glacier surface catchment to characterise the microbial communities within the weathering crust, their origins and destinies, and the functional potential of the weathering crust metagenome. Our findings reveal that the bacterial community in the weathering crust is distinct from those in upstream and downstream habitats. However, it comprises two separate micro-habitats, each with different taxa and functional categories. The interstitial porewater is dominated by Polaromonas, influenced by the transfer of snowmelt, and exported via meltwater channels. In contrast, the ice matrix is dominated by Hymenobacter, and its metagenome exhibits a diverse range of functional adaptations. Given that the global weathering crust area and the subsequent release of microbes from it are strongly responsive to climate projections for the rest of the century, our results underscore the pressing need to integrate the microbiome of the weathering crust with other communities and processes in glacial ecosystems.


Asunto(s)
Cubierta de Hielo , Microbiota , Cubierta de Hielo/microbiología , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética , Regiones Árticas
2.
Microb Genom ; 9(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37937832

RESUMEN

The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.


Asunto(s)
Cubierta de Hielo , Microbiota , Humanos , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Metagenoma , Microbiota/genética , Biodiversidad , Azufre
3.
Sci Total Environ ; 892: 164480, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37263426

RESUMEN

Whillans Subglacial Lake (SLW) lies beneath 801 m of ice in the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and active subglacial drainage network. Here, the geochemical characterization of SLW rare earth elements (REE), trace elements (TE), free amino acids (FAA), and phenolic compounds (PC) measured in lakewater and sediment porewater are reported. The results show, on average, higher values of REEs in the lakewater than in the porewater, and clear changes in all REE concentrations and select redox sensitive trace element concentrations in porewaters at a depth of ~15 cm in the 38 cm lake sediment core. This is consistent with prior results on the lake sediment redox conditions based on gas chemistry and microbiological data. Low concentrations of vanillyl phenols were measured in the SLW water column with higher concentrations in porewater samples and their concentration profiles in the sediments may also reflect changing redox conditions in the sediments. Vanillin concentrations increased with depth in the sediments as oxygenation decreases, while the concentrations of vanillic acid, the more oxidized component, were higher in the more oxygenated surface sediments. Collectively these results indicate redox changes occurring with the upper 38 cm of sediment in SLW and provide support for the existence of a seawater source, already hypothesized, in the sediments below the lowest measured depth, and of a complex and dynamic geochemical system beneath the West Antarctic Ice Sheet. Our results are the first to detail geochemical properties from an Antarctic subglacial environment using direct sampling technology. Due to their isolation from the wider environment, subglacial lakes represent one of our planets last pristine environments that provide habitats for microbial life and natural biogeochemical cycles but also impact the basal hydrology and can cause ice flow variations.


Asunto(s)
Metales de Tierras Raras , Oligoelementos , Lagos/química , Oligoelementos/análisis , Regiones Antárticas , Metales de Tierras Raras/análisis , Carbono
4.
Artículo en Inglés | MEDLINE | ID: mdl-34206524

RESUMEN

Hypertension and metabolic syndrome (METSYN) are reportedly high in police forces. This may contribute to health deterioration and absenteeism in police personnel. Police forces comprise of staff in 'operational' and 'non-operational' job types but it is not known if job type is associated to hypertension and METSYN prevalence. This study aimed to explore the prevalence of hypertension and METSYN, the factors associated with the risk of hypertension and METSYN, and compare physiological, psychological, and behavioural factors between operational and non-operational police personnel. Cross-sectional data was collected from 77 operational and 60 non-operational police workers. Hypertension and METSYN were prevalent in 60.5% and 20% of operational and 60.0% and 13.6% of non-operational police personnel, respectively (p > 0.05). Operational job type, moderate organisational stress (compared with low stress) and lower high-density lipoprotein cholesterol were associated with lower odds of hypertension, whereas increasing body mass index was associated with increased odds of hypertension (p < 0.05). None of the independent variables were significantly associated with the odds of METSYN. Operational police had several increased cardiometabolic risk markers compared with non-operational police. Given the high prevalence of hypertension and METSYN in operational and non-operational personnel, occupational health interventions are needed for the police and could be informed by the findings of this study.


Asunto(s)
Hipertensión , Síndrome Metabólico , Estudios Transversales , Humanos , Hipertensión/epidemiología , Síndrome Metabólico/epidemiología , Policia , Prevalencia , Factores de Riesgo
5.
Cryst Growth Des ; 20(6): 3762-3771, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-33192182

RESUMEN

The production of novel composite materials, assembled using biomimetic polymers known as peptoids (N-substituted glycines) to nucleate CaCO3, can open new pathways for advanced material design. However, a better understanding of the heterogeneous CaCO3 nucleation process is a necessary first step. We determined the thermodynamic and kinetic parameters for calcite nucleation on self-assembled monolayers (SAMs) of nanosheet-forming peptoid polymers and simpler, alkanethiol analogues. We used nucleation rate studies to determine the net interfacial free energy (γ net) for the peptoid-calcite interface and for SAMs terminated with carboxyl headgroups, amine headgroups, or a mix of the two. We compared the results with γ net determined from dynamic force spectroscopy (DFS) and from density functional theory (DFT), using COSMO-RS simulations. Calcite nucleation has a lower thermodynamic barrier on the peptoid surface than on carboxyl and amine SAMs. From the relationship between nucleation rate (J 0) and saturation state, we found that under low-saturation conditions, i.e. <3.3 (pH 9.0), nucleation on the peptoid substrate was faster than that on all of the model surfaces, indicating a thermodynamic drive toward heterogeneous nucleation. When they are taken together, our results indicate that nanosheet-forming peptoid monolayers can serve as an organic template for CaCO3 polymorph growth.

6.
J Strength Cond Res ; 34(10): 2824-2831, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31136544

RESUMEN

Wells, JET, Mitchell, ACS, Charalambous, LH, and Fletcher, IM. Relationships between highly skilled golfers' clubhead velocity and vertical ground reaction force asymmetry during vertical jumps and an isometric midthigh pull. J Strength Cond Res 34(10): 2824-2831, 2020-Clubhead velocity (CHV) is a commonly measured variable within golf due to strong associations with increased drive distance. Previous research has revealed significant relationships between CHV and vertical ground reaction force (vGRF) variables during bilateral tasks including a countermovement jump (CMJ), squat jump (SJ), drop jump (DJ), and isometric midthigh pull (IMTP). Asymmetries have been linked to performance outcomes in a number of sports; however, few studies have assessed asymmetries within golf. The current study, therefore, examined the relationships between CHV and vGRF asymmetries for CMJ positive impulse, SJ positive impulse, DJ positive impulse, and IMTP peak force (PF). Furthermore, the level of agreement for asymmetries between protocols was assessed by using Kappa coefficients. Fifty highly skilled (handicap ≤5) male golfers attended laboratory and range-based testing sessions. Positive impulse and PF were measured using a dual force platform system, with CHV measured using a TrackMan 3e launch monitor. There was no significant relationship (r = -0.14 to 0.22) between CHV and each of the vGRF asymmetry measures. Of the golfers tested, 26 had a "real" asymmetry in the CMJ, 18 had a "real" asymmetry in the SJ, 25 had a "real" asymmetry in the DJ, and 27 had a "real" asymmetry in the IMTP. Kappa coefficients indicated that asymmetries rarely favored the same limb (k = 0.06 to 0.39) with asymmetries varying for individual golfers between protocols. As such, asymmetries are neither beneficial nor detrimental to CHV but are inherently individual and dependent on the task.


Asunto(s)
Golf/fisiología , Fuerza Muscular/fisiología , Muslo/fisiología , Adolescente , Adulto , Estudios Transversales , Humanos , Masculino , Postura , Adulto Joven
7.
Int J Sports Med ; 40(13): 871-875, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31590189

RESUMEN

High amounts of sitting increase the risk of non-communicable disease and mortality. Treadmill desks make it possible to reduce sitting during the desk-based worker's day. This study investigated the acute effect on postural stability of interrupting prolonged sitting with an accumulated 2-h of light-intensity treadmill desk walking. Twenty-one sedentary adults participated in this randomized acute crossover trial, with two 6.5 h conditions: 1) uninterrupted sitting and 2) interrupted sitting with accumulated 2 h light-intensity treadmill desk walking. Pre- and post-condition, participants performed four postural stability tests on a pressure plate (bipedal and unipedal standing stance, eyes open and eyes closed). Anteroposterior center of pressure amplitude showed a significant condition x time interaction in bipedal eyes closed (F(1,20)=4.62, p=0.046) and unipedal eyes open (F(1,20)=9.42, p=0.006) tests, and mediolateral center of pressure amplitude in bipedal eyes closed (F(1,20)=6.12, p=0.023) and bipedal eyes open (F(1,12)=5.55, p=0.029) tests. In the significant interactions, amplitude increased pre to post condition in the uninterrupted sitting condition. The accumulated 2 h light-intensity treadmill desk walking ameliorated the negative effect of 6.5 h prolonged sitting on postural sway, supporting workplace treadmill desk use.


Asunto(s)
Ergometría/instrumentación , Equilibrio Postural/fisiología , Sedestación , Caminata/fisiología , Lugar de Trabajo , Adulto , Estudios Cruzados , Femenino , Humanos , Diseño Interior y Mobiliario , Masculino , Persona de Mediana Edad , Salud Laboral , Análisis y Desempeño de Tareas
8.
J Sports Sci ; 37(12): 1381-1386, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30572804

RESUMEN

A number of field-based investigations have evidenced practically significant relationships between clubhead velocity (CHV), vertical jump performance and maximum strength. Unfortunately, whilst these investigations provide a great deal of external validity, they are unable to ascertain vertical ground reaction force (vGRF) variables that may relate to golfers' CHVs. This investigation aimed to assess if the variance in European Challenge Tour golfers' CHVs could be predicted by countermovement jump (CMJ) positive impulse (PI), isometric mid-thigh pull (IMTP) peak force (PF) and rate of force development (RFD) from 0-50 ms, 0-100 ms, 0-150 ms and 0-200 ms. Thirty-one elite level European Challenge Tour golfers performed a CMJ and IMTP on dual force plates at a tournament venue, with CHV measured on a driving range. Hierarchical multiple regression results indicated that the variance in CHV was significantly predicted by all four models (model one R2 = 0.379; model two R2 = 0.392, model three R2 = 0.422, model four R2 = 0.480), with Akaike's information criterion indicating that model one was the best fit. Individual standardised beta coefficients revealed that CMJ PI was the only significant variable, accounting for 37.9% of the variance in European Challenge Tour Golfers' CHVs.


Asunto(s)
Rendimiento Atlético/fisiología , Golf/fisiología , Fuerza Muscular , Adulto , Fenómenos Biomecánicos , Ecocardiografía , Prueba de Esfuerzo , Humanos , Masculino , Muslo/fisiología , Adulto Joven
9.
Gait Posture ; 64: 114-118, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29902713

RESUMEN

BACKGROUND: Chronic ankle instability (CAI) has previously been linked to altered lower limb kinematics and muscle activation characteristics during walking, though little research has been performed analysing the full time-series across the stance and swing phases of gait. RESEARCH QUESTION: The aim of this study was to compare trunk and lower limb kinematics and muscle activity between those with chronic ankle instability and healthy controls. METHODS: Kinematics and muscle activity were measured in 18 (14 males, 4 females) healthy controls (age 22.4 ±â€¯3.6 years, height 177.8 ±â€¯7.6 cm, mass 70.4 ±â€¯11.9 kg, UK shoe size 8.4 ±â€¯1.6), and 18 (13 males, 5 females) participants with chronic ankle instability (age 22.0 ±â€¯2.7 years, height 176.8 ±â€¯7.9 cm, mass 74.1 ±â€¯9.6 kg, UK shoe size 8.1 ±â€¯1.9) during barefoot walking trials, using a combined Helen Hayes and Oxford foot model. Surface electromyography (sEMG) was recorded for the tibialis anterior and gluteus medius. Full curve statistical parametric mapping was performed using independent and paired-samples T-tests. RESULTS: No significant differences were observed in kinematic or sEMG variables between or within groups for the duration of the swing phase of gait. A significantly increased forefoot-tibia inversion was seen in the CAI affected limb when compared to the CAI unaffected limb at 4-16% stance (p = 0.039). No other significant differences were observed. SIGNIFICANCE: There appears to be no differences in muscle activation and movement between CAI and healthy control groups. However, participants with CAI exhibited increased inversion patterns during the stance phase of gait in their affected limb compared to their unaffected limb. This may predispose those with CAI to episodes of giving way and further ankle sprains.


Asunto(s)
Articulación del Tobillo/fisiopatología , Marcha/fisiología , Inestabilidad de la Articulación/fisiopatología , Músculo Esquelético/fisiopatología , Adolescente , Adulto , Fenómenos Biomecánicos , Estudios de Casos y Controles , Enfermedad Crónica , Electromiografía , Femenino , Humanos , Masculino , Caminata/fisiología , Adulto Joven
10.
J Sports Sci ; 36(16): 1847-1851, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29300147

RESUMEN

Whilst previous research has highlighted significant relationships between golfers' clubhead velocity (CHV) and their vertical jump height and maximum strength, these field-based protocols were unable to measure the actual vertical ground reaction force (vGRF) variables that may correlate to performance. The aim of this study was to investigate relationships between isometric mid-thigh pull (IMTP), countermovement jump (CMJ), squat jump (SJ) and drop jump (DJ) vGRF variables and CHV in highly skilled golfers. Twenty-seven male category 1 golfers performed IMTP, CMJ, SJ and DJ on a dual force platform. The vertical jumps were used to measure positive impulse during different stretch-shortening cycle velocities, with the IMTP assessing peak force (PF) and rate of force development (RFD). Clubhead velocity was measured using a TrackMan launch monitor at a golf driving range. Pearsons correlation coefficient analyses revealed significant relationships between peak CHV and CMJ positive impulse (r = 0.788, p < 0.001), SJ positive impulse (r = 0.692; p < 0.001), DJ positive impulse (r = 0.561, p < 0.01), PF (r = 0.482, p < 0.01), RFD from 0-150 ms (r = 0.343, p < 0.05) and RFD from 0-200 ms (r = 0.398, p < 0.05). The findings from this investigation indicate strong relationships between vertical ground reaction force variables and clubhead velocity.


Asunto(s)
Rendimiento Atlético/fisiología , Golf/fisiología , Ejercicio Pliométrico , Humanos , Contracción Isométrica , Masculino , Músculo Esquelético/fisiología , Equipo Deportivo , Análisis y Desempeño de Tareas , Muslo/fisiología
11.
J Sports Sci Med ; 16(3): 311-317, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28912647

RESUMEN

The physical demands of fast-medium bowling are increasingly being recognised, yet comparative exploration of the differing demands between competitive formats (i.e. one-day [OD] versus multi-day [MD] matches) remain minimal. The aim of this study was to describe in-match physiological profiles of professional fast-medium bowlers from England across different versions of competitive matches using a multivariable wearable monitoring device. Seven professional cricket fast-medium bowlers wore the BioharnessTM monitoring device during matches, over three seasons (>80 hours in-match). Heart Rate (HR) and Acceleromety (ACC) was compared across match types (OD, MD) and different in-match activity states (Bowling, Between over bowling, Fielding). Peak acceleration during OD bowling was significantly higher in comparison to MD cricket ([OD vs. MD] 234.1 ± 57.9 vs 226.6 ± 32.9 ct·episode-1, p < 0.05, ES = 0.11-0.30). Data for ACC were also higher during OD than MD fielding activities (p < 0.01, ES = 0.11-.30). OD bowling stimulated higher mean HR responses (143 ± 14 vs 137 ± 16 beats·min-1, p < 0.05, ES = 0.21) when compared to MD matches. This increase in OD cricket was evident for both between over (129 ± 9 vs 120 ± 13 beats·min-1,p < 0.01, ES = 0.11-0.50) and during fielding (115 ± 12 vs 106 ± 12 beats·min-1, p < 0.01, ES = 0.36) activity. The increased HR and ACC evident in OD matches suggest greater acute physical loads than MD formats. Therefore, use of wearable technology and the findings provided give a valuable appreciation of the differences in match loads, and thus required physiological preparation and recovery in fast-medium bowlers.

12.
J Sports Sci ; 35(3): 224-230, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26982533

RESUMEN

This study aimed to examine the effect of the impact point on the golf ball on the horizontal launch angle and side spin during putting with a mechanical putting arm and human participants. Putts of 3.2 m were completed with a mechanical putting arm (four putter-ball combinations, total of 160 trials) and human participants (two putter-ball combinations, total of 337 trials). The centre of the dimple pattern (centroid) was located and the following variables were measured: distance and angle of the impact point from the centroid and surface area of the impact zone. Multiple regression analysis was conducted to identify whether impact variables had significant associations with ball roll variables, horizontal launch angle and side spin. Significant associations were identified between impact variables and horizontal launch angle with the mechanical putting arm but this was not replicated with human participants. The variability caused by "dimple error" was minimal with the mechanical putting arm and not evident with human participants. Differences between the mechanical putting arm and human participants may be due to the way impulse is imparted on the ball. Therefore it is concluded that variability of impact point on the golf ball has a minimal effect on putting performance.


Asunto(s)
Golf , Movimiento , Equipo Deportivo , Análisis y Desempeño de Tareas , Adulto , Fenómenos Biomecánicos , Humanos
13.
Front Microbiol ; 7: 1705, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833599

RESUMEN

Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW) is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep), oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days) while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d-1) obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8%) indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms in the SLW water column. Heterotrophic metabolisms utilizing acetate and formate as electron donors yielded less energy than chemolithotrophic metabolisms when calculated in terms of energy density, which supports experimental results that showed chemoautotrophic activity in excess of heterotrophic activity. The microbial communities of subglacial lake ecosystems provide important natural laboratories to study the physiological and biogeochemical behavior of microorganisms inhabiting cold, dark environments.

14.
J Athl Train ; 50(7): 697-703, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26067429

RESUMEN

CONTEXT: Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. OBJECTIVE: To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. DESIGN: Randomized controlled clinical trial. SETTING: University of Hertfordshire human performance laboratory. PATIENTS OR OTHER PARTICIPANTS: A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. INTERVENTION(S): Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. MAIN OUTCOME MEASURE(S): Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. RESULTS: We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). CONCLUSIONS: Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions.


Asunto(s)
Traumatismos del Tobillo/fisiopatología , Crioterapia/métodos , Músculo Esquelético/fisiología , Tiempo de Reacción/fisiología , Adolescente , Adulto , Articulación del Tobillo/fisiología , Atletas , Femenino , Pie , Humanos , Hielo , Inestabilidad de la Articulación/etiología , Inestabilidad de la Articulación/fisiopatología , Masculino , Movimiento , Agua , Adulto Joven
15.
Sports Biomech ; 14(2): 206-15, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26102559

RESUMEN

This study aimed to examine the reliability of an experimental method identifying the location of the impact point on a golf ball during putting. Forty trials were completed using a mechanical putting robot set to reproduce a putt of 3.2 m, with four different putter-ball combinations. After locating the centre of the dimple pattern (centroid) the following variables were tested; distance of the impact point from the centroid, angle of the impact point from the centroid and distance of the impact point from the centroid derived from the X, Y coordinates. Good to excellent reliability was demonstrated in all impact variables reflected in very strong relative (ICC = 0.98-1.00) and absolute reliability (SEM% = 0.9-4.3%). The highest SEM% observed was 7% for the angle of the impact point from the centroid. In conclusion, the experimental method was shown to be reliable at locating the centroid location of a golf ball, therefore allowing for the identification of the point of impact with the putter head and is suitable for use in subsequent studies.


Asunto(s)
Simulación por Computador , Golf/fisiología , Percepción de Movimiento , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Fenómenos Biomecánicos , Humanos , Reproducibilidad de los Resultados , Equipo Deportivo , Análisis y Desempeño de Tareas
16.
Front Microbiol ; 5: 594, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25477865

RESUMEN

Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5'-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the "Sideroxydans" and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of "Sideroxydans" and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm(-3)d(-1)) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.

17.
Nature ; 512(7514): 310-3, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25143114

RESUMEN

Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes that can mobilize elements from the lithosphere and influence Southern Ocean geochemical and biological systems.


Asunto(s)
Organismos Acuáticos/aislamiento & purificación , Ecosistema , Cubierta de Hielo , Lagos/microbiología , Regiones Antárticas , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Carbono/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Cubierta de Hielo/química , Lagos/química , Océanos y Mares , Filogenia
18.
J Strength Cond Res ; 28(5): 1465-73, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23897016

RESUMEN

Cricket is a global sport played in over 100 countries with elite performers attracting multimillion dollar contracts. Therefore, performers maintaining optimum physical fitness and remaining injury free is important. Fast bowlers have a vital position in a cricket team, and there is an increasing body of scientific literature that has reviewed this role over the past decade. Previous research on fast bowlers has tended to focus on biomechanical analysis and injury prevention in performers. However, this review aims to critically analyze the emerging contribution of physiological-based literature linked to fast bowling in cricket, highlight the current evidence related to simulated and competitive in-match performance, and relate this practically to the conditioning coach. Furthermore, the review considers limitations with past research and possible avenues for future investigation. It is clear with the advent of new applied mobile monitoring technology that there is scope for more ecologically valid and longitudinal exploration capturing in-match data, providing quantification of physiological workloads, and analysis of the physical demands across the differing formats of the game. Currently, strength and conditioning specialists do not have a critical academic resource with which to shape professional practice, and this review aims to provide a starting point for evidence in the specific area.


Asunto(s)
Rendimiento Atlético/fisiología , Acondicionamiento Físico Humano/fisiología , Aptitud Física/fisiología , Deportes/fisiología , Antropometría , Fenómenos Biomecánicos , Humanos , Esfuerzo Físico/fisiología
19.
Biofouling ; 29(6): 715-33, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23802871

RESUMEN

Microbially-induced calcium carbonate (CaCO3) precipitation (MICP) is a widely explored and promising technology for use in various engineering applications. In this review, CaCO3 precipitation induced via urea hydrolysis (ureolysis) is examined for improving construction materials, cementing porous media, hydraulic control, and remediating environmental concerns. The control of MICP is explored through the manipulation of three factors: (1) the ureolytic activity (of microorganisms), (2) the reaction and transport rates of substrates, and (3) the saturation conditions of carbonate minerals. Many combinations of these factors have been researched to spatially and temporally control precipitation. This review discusses how optimization of MICP is attempted for different engineering applications in an effort to highlight the key research and development questions necessary to move MICP technologies toward commercial scale applications.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Carbonato de Calcio/química , Precipitación Química , Materiales de Construcción/microbiología , Restauración y Remediación Ambiental/métodos , Urea/química , Ingeniería , Hidrólisis , Porosidad , Propiedades de Superficie
20.
J Athl Train ; 48(3): 326-30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23675791

RESUMEN

CONTEXT: Foot structure has been shown to affect aspects of neuromuscular control, including postural stability and proprioception. However, despite an association between pronated and supinated foot structures and the incidence of lateral ankle sprains, no one to our knowledge has measured muscle reaction time to a simulated ankle-sprain mechanism in participants with different foot structures. OBJECTIVE: To determine whether pronated or supinated foot structures contribute to neuromuscular deficits as measured by muscle reaction time to a simulated ankle-sprain mechanism. DESIGN: Cross-sectional study. SETTING: University biomechanics laboratory. PATIENTS OR OTHER PARTICIPANTS: Thirty volunteers were categorized into 3 groups according to navicular-drop-height measures. Ten participants (4 men, 6 women) had neutral feet (navicular-drop height = 5-9 mm), 10 participants (4 men, 6 women) had pronated feet (navicular-drop height ≥ 10 mm), and 10 participants (4 men, 6 women) had supinated feet (navicular-drop height ≤ 4 mm). INTERVENTION(S): Three perturbations on a standing tilt platform simulating the mechanics of an inversion and plantar-flexion ankle sprain. MAIN OUTCOME MEASURE(S): Muscle reaction time in milliseconds of the peroneus longus, tibialis anterior, and gluteus medius to the tilt-platform perturbation. RESULTS: Participants with pronated or supinated foot structures had slower peroneus longus reaction times than participants with neutral feet (P = .01 and P = .04, respectively). We found no differences for the tibialis anterior or gluteus medius. CONCLUSIONS: Foot structure influenced peroneus longus reaction time. Further research is required to establish the consequences of slower peroneal reaction times in pronated and supinated foot structures. Researchers investigating lower limb muscle reaction time should control for foot structure because it may influence results.


Asunto(s)
Traumatismos del Tobillo/fisiopatología , Pie/fisiopatología , Inestabilidad de la Articulación/fisiopatología , Músculo Esquelético/fisiopatología , Esguinces y Distensiones/fisiopatología , Adolescente , Adulto , Análisis de Varianza , Fenómenos Biomecánicos , Estudios Transversales , Electromiografía , Femenino , Humanos , Ligamentos Articulares/lesiones , Masculino , Pronación , Tiempo de Reacción , Medición de Riesgo , Supinación , Traumatismos de los Tendones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA