Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 594(7861): 117-123, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34012113

RESUMEN

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Asunto(s)
Biosíntesis de Proteínas/genética , Proteostasis/genética , ARN sin Sentido/genética , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Anciano , Animales , Sitios de Unión , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Diferenciación Celular , Progresión de la Enfermedad , Femenino , Humanos , Sitios Internos de Entrada al Ribosoma/genética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología , Ribosomas/metabolismo , Proteínas tau/biosíntesis
2.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806803

RESUMEN

Several studies have shown that human induced pluripotent stem cell (iPSC)-derivatives are essentially fetal in terms of their maturational status. Inducing ageing in iPSC-motor neuron (MN) models of amyotrophic lateral sclerosis (ALS) has the potential to capture pathology with higher fidelity and consequently improve translational success. We show here that the telomerase inhibitor BIBR1532, hypothesised to recapitulate the telomere attrition hallmark of ageing in iPSC-MNs, was in fact cytotoxic to feeder-free iPSCs when used at doses previously shown to be effective in iPSCs grown on a layer of mouse embryonic fibroblasts. Toxicity in feeder-free cultures was not rescued by co-treatment with Rho Kinase (ROCK) inhibitor (Y-27632). Moreover, the highest concentration of BIBR1532 compatible with continued iPSC culture proved insufficient to induce detectable telomerase inhibition. Our data suggest that direct toxicity by BIBR1532 is the most likely cause of iPSC death observed, and that culture methods may influence enhanced toxicity. Therefore, recapitulation of ageing hallmarks in iPSC-MNs, which might reveal novel and relevant human disease targets in ALS, is not achievable in feeder-free culture through the use of this small molecule telomerase inhibitor.


Asunto(s)
Aminobenzoatos/farmacología , Inhibidores Enzimáticos/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas Motoras/citología , Naftalenos/farmacología , Neurogénesis/efectos de los fármacos , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo
3.
Brain ; 143(2): 430-440, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32040555

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by motor neuron loss, resulting in muscle wasting, paralysis and eventual death. A key pathological feature of ALS is cytoplasmically mislocalized and aggregated TDP-43 protein in >95% of cases, which is considered to have prion-like properties. Historical studies have predominantly focused on genetic forms of ALS, which represent ∼10% of cases, leaving the remaining 90% of sporadic ALS relatively understudied. Additionally, the role of astrocytes in ALS and their relationship with TDP-43 pathology is also not currently well understood. We have therefore used highly enriched human induced pluripotent stem cell (iPSC)-derived motor neurons and astrocytes to model early cell type-specific features of sporadic ALS. We first demonstrate seeded aggregation of TDP-43 by exposing human iPSC-derived motor neurons to serially passaged sporadic ALS post-mortem tissue (spALS) extracts. Next, we show that human iPSC-derived motor neurons are more vulnerable to TDP-43 aggregation and toxicity compared with their astrocyte counterparts. We demonstrate that these TDP-43 aggregates can more readily propagate from motor neurons into astrocytes in co-culture paradigms. We next found that astrocytes are neuroprotective to seeded aggregation within motor neurons by reducing (mislocalized) cytoplasmic TDP-43, TDP-43 aggregation and cell toxicity. Furthermore, we detected TDP-43 oligomers in these spALS spinal cord extracts, and as such demonstrated that highly purified recombinant TDP-43 oligomers can reproduce this observed cell-type specific toxicity, providing further support to a protein oligomer-mediated toxicity hypothesis in ALS. In summary, we have developed a human, clinically relevant, and cell-type specific modelling platform that recapitulates key aspects of sporadic ALS and uncovers both an initial neuroprotective role for astrocytes and the cell type-specific toxic effect of TDP-43 oligomers.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Astrocitos/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Muerte Celular/genética , Citoplasma/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Médula Espinal/metabolismo , Médula Espinal/patología
4.
Brain ; 142(9): 2572-2580, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368485

RESUMEN

Mutations causing amyotrophic lateral sclerosis (ALS) clearly implicate ubiquitously expressed and predominantly nuclear RNA binding proteins, which form pathological cytoplasmic inclusions in this context. However, the possibility that wild-type RNA binding proteins mislocalize without necessarily becoming constituents of cytoplasmic inclusions themselves remains relatively unexplored. We hypothesized that nuclear-to-cytoplasmic mislocalization of the RNA binding protein fused in sarcoma (FUS), in an unaggregated state, may occur more widely in ALS than previously recognized. To address this hypothesis, we analysed motor neurons from a human ALS induced-pluripotent stem cell model caused by the VCP mutation. Additionally, we examined mouse transgenic models and post-mortem tissue from human sporadic ALS cases. We report nuclear-to-cytoplasmic mislocalization of FUS in both VCP-mutation related ALS and, crucially, in sporadic ALS spinal cord tissue from multiple cases. Furthermore, we provide evidence that FUS protein binds to an aberrantly retained intron within the SFPQ transcript, which is exported from the nucleus into the cytoplasm. Collectively, these data support a model for ALS pathogenesis whereby aberrant intron retention in SFPQ transcripts contributes to FUS mislocalization through their direct interaction and nuclear export. In summary, we report widespread mislocalization of the FUS protein in ALS and propose a putative underlying mechanism for this process.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Biomarcadores/metabolismo , Núcleo Celular/química , Núcleo Celular/genética , Citoplasma/química , Citoplasma/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína FUS de Unión a ARN/análisis , Proteína FUS de Unión a ARN/genética
5.
Nat Commun ; 9(1): 2010, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789581

RESUMEN

Mutations causing amyotrophic lateral sclerosis (ALS) strongly implicate ubiquitously expressed regulators of RNA processing. To understand the molecular impact of ALS-causing mutations on neuronal development and disease, we analysed transcriptomes during in vitro differentiation of motor neurons (MNs) from human control and patient-specific VCP mutant induced-pluripotent stem cells (iPSCs). We identify increased intron retention (IR) as a dominant feature of the splicing programme during early neural differentiation. Importantly, IR occurs prematurely in VCP mutant cultures compared with control counterparts. These aberrant IR events are also seen in independent RNAseq data sets from SOD1- and FUS-mutant MNs. The most significant IR is seen in the SFPQ transcript. The SFPQ protein binds extensively to its retained intron, exhibits lower nuclear abundance in VCP mutant cultures and is lost from nuclei of MNs in mouse models and human sporadic ALS. Collectively, we demonstrate SFPQ IR and nuclear loss as molecular hallmarks of familial and sporadic ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Factor de Empalme Asociado a PTB/genética , Empalme del ARN , Médula Espinal/metabolismo , Proteína que Contiene Valosina/genética , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Exones , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Intrones , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neuronas Motoras/patología , Factor de Empalme Asociado a PTB/metabolismo , Cultivo Primario de Células , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Análisis de Secuencia de ARN , Médula Espinal/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Proteína que Contiene Valosina/metabolismo
6.
Cell Rep ; 23(3): 899-908, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29669293

RESUMEN

Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Ingeniería de Tejidos , Diferenciación Celular , Linaje de la Célula , Humanos , Hidrogeles/química , Desarrollo de Músculos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Andamios del Tejido/química
7.
Acta Neuropathol ; 135(3): 445-457, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29380049

RESUMEN

A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Neurodegeneration may occur via transcription of the repeats into inherently toxic repetitive sense and antisense RNA species, or via repeat-associated non-ATG initiated translation (RANT) of sense and antisense RNA into toxic dipeptide repeat proteins. We have previously demonstrated that regular interspersion of repeat RNA with stop codons prevents RANT (RNA-only models), allowing us to study the role of repeat RNA in isolation. Here we have created novel RNA-only Drosophila models, including the first models of antisense repeat toxicity, and flies expressing extremely large repeats, within the range observed in patients. We generated flies expressing ~ 100 repeat sense or antisense RNA either as part of a processed polyadenylated transcript or intronic sequence. We additionally created Drosophila expressing > 1000 RNA-only repeats in the sense direction. When expressed in adult Drosophila neurons polyadenylated repeat RNA is largely cytoplasmic in localisation, whilst intronic repeat RNA forms intranuclear RNA foci, as does > 1000 repeat RNA, thus allowing us to investigate both nuclear and cytoplasmic RNA toxicity. We confirmed that these RNA foci are capable of sequestering endogenous Drosophila RNA-binding proteins, and that the production of dipeptide proteins (poly-glycine-proline, and poly-glycine-arginine) is suppressed in our models. We find that neither cytoplasmic nor nuclear sense or antisense RNA are toxic when expressed in adult Drosophila neurons, suggesting they have a limited role in disease pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/metabolismo , Demencia Frontotemporal/metabolismo , ARN/metabolismo , Animales , Animales Modificados Genéticamente , Proteína C9orf72/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Citoplasma/metabolismo , Citoplasma/patología , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Drosophila , Femenino , Demencia Frontotemporal/patología , Intrones , Masculino , Neuronas/metabolismo , Neuronas/patología
8.
EMBO Mol Med ; 10(1): 22-31, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29113975

RESUMEN

Intronic GGGGCC repeat expansions in C9orf72 are the most common known cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are characterised by degeneration of cortical and motor neurons, respectively. Repeat expansions have been proposed to cause disease by both the repeat RNA forming foci that sequester RNA-binding proteins and through toxic dipeptide repeat proteins generated by repeat-associated non-ATG translation. GGGGCC repeat RNA folds into a G-quadruplex secondary structure, and we investigated whether targeting this structure is a potential therapeutic strategy. We performed a screen that identified three structurally related small molecules that specifically stabilise GGGGCC repeat G-quadruplex RNA We investigated their effect in C9orf72 patient iPSC-derived motor and cortical neurons and show that they significantly reduce RNA foci burden and the levels of dipeptide repeat proteins. Furthermore, they also reduce dipeptide repeat proteins and improve survival in vivo, in GGGGCC repeat-expressing Drosophila Therefore, small molecules that target GGGGCC repeat G-quadruplexes can ameliorate the two key pathologies associated with C9orf72 FTD/ALS These data provide proof of principle that targeting GGGGCC repeat G-quadruplexes has therapeutic potential.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteína C9orf72/genética , Descubrimiento de Drogas , Demencia Frontotemporal/tratamiento farmacológico , G-Cuádruplex/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Esclerosis Amiotrófica Lateral/genética , Animales , Drosophila , Demencia Frontotemporal/genética , Humanos , ARN/química , ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...