Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; 29(6): 2127-2148, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966978

RESUMEN

Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons having been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.


Asunto(s)
Drosophila melanogaster , Neuronas , Animales , Neuronas/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos
2.
PLoS Genet ; 19(11): e1011025, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943859

RESUMEN

Sensory neurons enable an organism to perceive external stimuli, which is essential for survival. The sensory capacity of a neuron depends on the elaboration of its dendritic arbor and the localization of sensory ion channels to the dendritic membrane. However, it is not well understood when and how ion channels localize to growing sensory dendrites and whether their delivery is coordinated with growth of the dendritic arbor. We investigated the localization of the DEG/ENaC/ASIC ion channel Pickpocket (Ppk) in the peripheral sensory neurons of developing fruit flies. We used CRISPR-Cas9 genome engineering approaches to tag endogenous Ppk1 and visualize it live, including monitoring Ppk1 membrane localization via a novel secreted split-GFP approach. Fluorescently tagged endogenous Ppk1 localizes to dendrites, as previously reported, and, unexpectedly, to axons and axon terminals. In dendrites, Ppk1 is present throughout actively growing dendrite branches and is stably integrated into the neuronal cell membrane during the expansive growth of the arbor. Although Ppk channels are dispensable for dendrite growth, we found that an over-active channel mutant severely reduces dendrite growth, likely by acting at an internal membrane and not the dendritic membrane. Our data reveal that the molecular motor dynein and recycling endosome GTPase Rab11 are needed for the proper trafficking of Ppk1 to dendrites. Based on our data, we propose that Ppk channel transport is coordinated with dendrite morphogenesis, which ensures proper ion channel density and distribution in sensory dendrites.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Dendritas/fisiología , Células Receptoras Sensoriales/metabolismo , Axones/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Canales Iónicos/genética
4.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37502991

RESUMEN

Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.

5.
Methods Mol Biol ; 2557: 635-644, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512242

RESUMEN

Neurons are polarized cells whose polarity and morphology rely on the robust localization of cellular organelles and cargo to axons or dendrites. Developing neurons require an active secretory pathway, which includes the endoplasmic reticulum and Golgi apparatus, to supply membrane and proteins to growing dendrites and axons. In some neurons, a subset of the Golgi called Golgi "outposts" localize to dendrites and contribute to local secretory networks. The movement and positioning of Golgi outposts have been correlated with dendrite branch growth and stabilization as the dendritic arbor is established. Live imaging is essential to capture the dynamic nature of these organelles. Here we outline a protocol to image and quantify Golgi outposts in peripheral sensory neurons in live, intact Drosophila larvae.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Dendritas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , Células Receptoras Sensoriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...