Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 608(7921): 93-97, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35794471

RESUMEN

Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.


Asunto(s)
Anopheles , Ecdisteroides , Malaria , Conducta Sexual Animal , Animales , Anopheles/enzimología , Anopheles/parasitología , Anopheles/fisiología , Ecdisteroides/biosíntesis , Ecdisteroides/metabolismo , Femenino , Fertilidad , Humanos , Malaria/parasitología , Malaria/prevención & control , Malaria/transmisión , Masculino , Mosquitos Vectores/parasitología , Oviposición , Fosforilación , Plasmodium
2.
PLoS Pathog ; 16(12): e1008908, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33347501

RESUMEN

Anopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors-Anopheles gambiae and Anopheles stephensi-is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict this reproductive cost on their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii, we find that Mating-Induced Stimulator of Oogenesis (MISO), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO-silenced females produce fewer eggs as they become increasingly infected with P. falciparum, while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors.


Asunto(s)
Anopheles/genética , Interacciones Huésped-Parásitos/genética , Plasmodium falciparum/genética , Animales , Anopheles/parasitología , Ecdisterona/genética , Ecdisterona/metabolismo , Femenino , Fertilidad/genética , Expresión Génica , Hormonas/fisiología , Malaria/parasitología , Malaria Falciparum/parasitología , Masculino , Mosquitos Vectores/genética , Oogénesis , Plasmodium falciparum/patogenicidad , Reproducción/fisiología
3.
Sci Rep ; 10(1): 14344, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873857

RESUMEN

The reproductive fitness of the Anopheles gambiae mosquito represents a promising target to prevent malaria transmission. The ecdysteroid hormone 20-hydroxyecdysone (20E), transferred from male to female during copulation, is key to An. gambiae reproductive success as it licenses females to oviposit eggs developed after blood feeding. Here we show that 20E-triggered oviposition in these mosquitoes is regulated by the stress- and immune-responsive c-Jun N-terminal kinase (JNK). The heads of mated females exhibit a transcriptional signature reminiscent of a JNK-dependent wounding response, while mating-or injection of virgins with exogenous 20E-selectively activates JNK in the same tissue. RNAi-mediated depletion of JNK pathway components inhibits oviposition in mated females, whereas JNK activation by silencing the JNK phosphatase puckered induces egg laying in virgins. Together, these data identify JNK as a potential conduit linking stress responses and reproductive success in the most important vector of malaria.


Asunto(s)
Anopheles/fisiología , Sistema de Señalización de MAP Quinasas/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Mosquitos Vectores/fisiología , Oviposición/genética , Animales , Copulación/efectos de los fármacos , Ecdisterona/farmacología , Femenino , Malaria/parasitología , Malaria/transmisión , Masculino , Proteína Quinasa 8 Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Plasmodium , Interferencia de ARN
5.
Nat Biotechnol ; 38(4): 482-492, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32265562

RESUMEN

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6-96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.


Asunto(s)
Aedes/microbiología , Aedes/fisiología , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Mosquitos Vectores/fisiología , Wolbachia/fisiología , Aedes/crecimiento & desarrollo , Migración Animal , Animales , California , Femenino , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología , Masculino , Control de Mosquitos/estadística & datos numéricos , Mosquitos Vectores/crecimiento & desarrollo , Dinámica Poblacional , Caracteres Sexuales
6.
Nature ; 563(7732): 501-507, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429615

RESUMEN

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Asunto(s)
Aedes/genética , Infecciones por Arbovirus/virología , Arbovirus , Genoma de los Insectos/genética , Genómica/normas , Control de Insectos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Aedes/virología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus/aislamiento & purificación , Variaciones en el Número de Copia de ADN/genética , Virus del Dengue/aislamiento & purificación , Femenino , Variación Genética/genética , Genética de Población , Glutatión Transferasa/genética , Resistencia a los Insecticidas/efectos de los fármacos , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes/genética , Piretrinas/farmacología , Estándares de Referencia , Procesos de Determinación del Sexo/genética
7.
PLoS Negl Trop Dis ; 11(9): e0005902, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28957318

RESUMEN

BACKGROUND: Recent interest in male-based sterile insect technique (SIT) and incompatible insect technique (IIT) to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success) during field releases. METHODOLOGY/PRINCIPLE FINDINGS: Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v) in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males. CONCLUSIONS/SIGNIFICANCE: These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis) and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males.


Asunto(s)
Aedes/fisiología , Entomología/métodos , Colorantes Fluorescentes/administración & dosificación , Rodaminas/administración & dosificación , Conducta Sexual Animal , Coloración y Etiquetado/métodos , Animales , Femenino , Colorantes Fluorescentes/análisis , Masculino , Rodaminas/análisis , Semen/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-28389513

RESUMEN

Vectorial capacity is a mathematical approximation of the efficiency of vector-borne disease transmission, measured as the number of new infections disseminated per case per day by an insect vector. Multiple elements of mosquito biology govern their vectorial capacity, including survival, population densities, feeding preferences, and vector competence. Intriguingly, biological pathways essential to mosquito reproductive fitness directly or indirectly influence a number of these elements. Here, we explore this complex interaction, focusing on how the interplay between mating and blood feeding in female Anopheles not only shapes their reproductive success but also influences their ability to sustain Plasmodium parasite development. Central to malaria transmission, mosquito reproductive biology has recently become the focus of research strategies aimed at malaria control, and we discuss promising new methods based on the manipulation of key reproductive steps. In light of widespread resistance to all public health-approved insecticides targeting mosquito reproduction may prove crucial to the success of malaria-eradication campaigns.


Asunto(s)
Anopheles/efectos de los fármacos , Insectos Vectores , Insecticidas/uso terapéutico , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos , Reproducción/efectos de los fármacos , Animales , Humanos , Malaria/parasitología , Dinámica Poblacional
9.
PLoS Pathog ; 12(12): e1006060, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27977810

RESUMEN

The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/parasitología , Hidrazinas/farmacología , Insecticidas/farmacología , Hormonas Juveniles/farmacología , Malaria/transmisión , Control de Mosquitos/métodos , Animales , Ecdisterona/agonistas , Femenino , Etiquetado Corte-Fin in Situ , Insectos Vectores/efectos de los fármacos , Insectos Vectores/parasitología , Mosquiteros Tratados con Insecticida , Estadios del Ciclo de Vida/efectos de los fármacos , Modelos Teóricos , Dinámica Poblacional
10.
Mol Ecol ; 24(11): 2656-72, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25865270

RESUMEN

Functionally constrained genes are ideal insecticide targets because disruption is often fatal, and resistance mutations are typically costly. Synaptic acetylcholinesterase (AChE) is an essential neurotransmission enzyme targeted by insecticides used increasingly in malaria control. In Anopheles and Culex mosquitoes, a glycine-serine substitution at codon 119 of the Ace-1 gene confers both resistance and fitness costs, especially for 119S/S homozygotes. G119S in Anopheles gambiae from Accra (Ghana) is strongly associated with resistance, and, despite expectations of cost, resistant 119S alleles are increasing significantly in frequency. Sequencing of Accra females detected only a single Ace-1 119S haplotype, whereas 119G diversity was high overall but very low at non-synonymous sites, evidence of strong purifying selection driven by functional constraint. Flanking microsatellites showed reduced diversity, elevated linkage disequilibrium and high differentiation of 119S, relative to 119G homozygotes across up to two megabases of the genome. Yet these signals of selection were inconsistent and sometimes weak tens of kilobases from Ace-1. This unexpected finding is attributable to apparently ubiquitous amplification of 119S alleles as part of a large copy number variant (CNV) far exceeding the size of the Ace-1 gene, whereas 119G alleles were unduplicated. Ace-1 CNV was detectable in archived samples collected when the 119S allele was rare in Ghana. Multicopy amplification of resistant alleles has not been observed previously and is likely to underpin the recent increase in 119S frequency. The large CNV compromised localization of the strong selective sweep around Ace-1, emphasizing the need to integrate CNV analysis into genome scans for selection.


Asunto(s)
Acetilcolinesterasa/genética , Anopheles/genética , Variaciones en el Número de Copia de ADN , Evolución Molecular , Resistencia a los Insecticidas/genética , Alelos , Animales , Anopheles/enzimología , Femenino , Genes de Insecto , Genotipo , Ghana , Haplotipos , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
11.
Science ; 347(6225): 985-8, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25722409

RESUMEN

The availability of genome sequences from 16 anopheline species provides unprecedented opportunities to study the evolution of reproductive traits relevant for malaria transmission. In Anopheles gambiae, a likely candidate for sexual selection is male 20-hydroxyecdysone (20E). Sexual transfer of this steroid hormone as part of a mating plug dramatically changes female physiological processes intimately tied to vectorial capacity. By combining phenotypic studies with ancestral state reconstructions and phylogenetic analyses, we show that mating plug transfer and male 20E synthesis are both derived characters that have coevolved in anophelines, driving the adaptation of a female 20E-interacting protein that promotes oogenesis via mechanisms also favoring Plasmodium survival. Our data reveal coevolutionary dynamics of reproductive traits between the sexes likely to have shaped the ability of anophelines to transmit malaria.


Asunto(s)
Anopheles/fisiología , Ecdisterona/metabolismo , Insectos Vectores/fisiología , Preferencia en el Apareamiento Animal/fisiología , Oviposición/fisiología , Animales , Anopheles/clasificación , Evolución Biológica , Transporte Biológico , Femenino , Malaria/parasitología , Malaria/transmisión , Masculino , Oogénesis/fisiología , Filogenia
12.
Science ; 347(6217): 1258524, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25431491

RESUMEN

Introgressive hybridization is now recognized as a widespread phenomenon, but its role in evolution remains contested. Here, we use newly available reference genome assemblies to investigate phylogenetic relationships and introgression in a medically important group of Afrotropical mosquito sibling species. We have identified the correct species branching order to resolve a contentious phylogeny and show that lineages leading to the principal vectors of human malaria were among the first to split. Pervasive autosomal introgression between these malaria vectors means that only a small fraction of the genome, mainly on the X chromosome, has not crossed species boundaries. Our results suggest that traits enhancing vectorial capacity may be gained through interspecific gene flow, including between nonsister species.


Asunto(s)
Anopheles/clasificación , Anopheles/genética , Evolución Molecular , Genoma de los Insectos , Insectos Vectores/genética , Malaria/transmisión , Animales , Anopheles/crecimiento & desarrollo , Cromosomas de Insectos/genética , Genómica , Humanos , Filogenia , Polimorfismo Genético , Pupa/anatomía & histología , Pupa/crecimiento & desarrollo , Cromosoma X/genética
13.
Proc Natl Acad Sci U S A ; 111(46): 16353-8, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368171

RESUMEN

Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors.


Asunto(s)
Anopheles/fisiología , Ecdisterona/fisiología , Conducta Sexual Animal/fisiología , Animales , Copulación , Ecdisterona/farmacología , Femenino , Perfilación de la Expresión Génica , Genes de Insecto , Inyecciones , Insectos Vectores/fisiología , Malaria/transmisión , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Oviposición/fisiología , Factores de Tiempo , Transcripción Genética
14.
Proc Natl Acad Sci U S A ; 111(16): 5854-9, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711401

RESUMEN

Anopheles gambiae mosquitoes are major African vectors of malaria, a disease that kills more than 600,000 people every year. Given the spread of insecticide resistance in natural mosquito populations, alternative vector control strategies aimed at reducing the reproductive success of mosquitoes are being promoted. Unlike many other insects, An. gambiae females mate a single time in their lives and must use sperm stored in the sperm storage organ, the spermatheca, to fertilize a lifetime's supply of eggs. Maintenance of sperm viability during storage is therefore crucial to the reproductive capacity of these mosquitoes. However, to date, no information is available on the factors and mechanisms ensuring sperm functionality in the spermatheca. Here we identify cellular components and molecular mechanisms used by An. gambiae females to maximize their fertility. Pathways of energy metabolism, cellular transport, and oxidative stress are strongly regulated by mating in the spermatheca. We identify the mating-induced heme peroxidase (HPX) 15 as an important factor in long-term fertility, and demonstrate that its function is required during multiple gonotrophic cycles. We find that HPX15 induction is regulated by sexually transferred 20-hydroxy-ecdysone (20E), a steroid hormone that is produced by the male accessory glands and transferred during copulation, and that expression of this peroxidase is mediated via the 20E nuclear receptor. To our knowledge, our findings provide the first evidence of the mechanisms regulating fertility in Anopheles, and identify HPX15 as a target for vector control.


Asunto(s)
Estructuras Animales/enzimología , Anopheles/enzimología , Proteínas de Insectos/metabolismo , Peroxidasa/metabolismo , Conducta Sexual Animal , Espermatozoides/enzimología , Estructuras Animales/citología , Estructuras Animales/efectos de los fármacos , Estructuras Animales/ultraestructura , Animales , Anopheles/efectos de los fármacos , Anopheles/genética , Ecdisona/farmacología , Activación Enzimática/efectos de los fármacos , Femenino , Fertilidad/efectos de los fármacos , Fertilidad/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hemo/metabolismo , Proteínas de Insectos/genética , Masculino , Peroxidasa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Conducta Sexual Animal/efectos de los fármacos , Espermatozoides/citología , Espermatozoides/efectos de los fármacos , Espermatozoides/ultraestructura , Transcripción Genética/efectos de los fármacos
15.
PLoS One ; 9(3): e92662, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24675797

RESUMEN

The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT resistance in wild caught An. gambiae.


Asunto(s)
Anopheles/genética , Anopheles/metabolismo , DDT/farmacología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , África , Alelos , Sustitución de Aminoácidos , Animales , Anopheles/efectos de los fármacos , Catálisis , Activación Enzimática , Femenino , Expresión Génica , Genes de Insecto , Variación Genética , Haplotipos , Modelos Moleculares , Mutación , Filogeografía , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes
16.
Insect Biochem Mol Biol ; 42(12): 918-24, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23023059

RESUMEN

Identifying molecular mechanisms of insecticide resistance is important for preserving insecticide efficacy, developing new insecticides and implementing insect control. The metabolic detoxification of insecticides is a widespread resistance mechanism. Enzymes with the potential to detoxify insecticides are commonly encoded by members of the large cytochrome P450, glutathione S-transferase and carboxylesterase gene families, all rapidly evolving in insects. Here, we demonstrate that the model insect Drosophila melanogaster is useful for functionally validating the role of metabolic enzymes in conferring metabolism-based insecticide resistance. Alleles of three well-characterized genes from different pest insects were expressed in transgenic D. melanogaster : a carboxylesterase gene (αE7) from the Australian sheep blowfly Lucilia cuprina, a glutathione S-transferase gene (GstE2) from the mosquito Anopheles gambiae and a cytochrome P450 gene (Cyp6cm1) from the whitefly Bemisia tabaci. For all genes, expression in D. melanogaster resulted in insecticide resistance phenotypes mirroring those observed in resistant populations of the pest species. Using D. melanogaster to assess the potential for novel metabolic resistance mechanisms to evolve in pest species is discussed.


Asunto(s)
Drosophila melanogaster/genética , Genes de Insecto , Resistencia a los Insecticidas/genética , Modelos Animales , Animales , Animales Modificados Genéticamente/metabolismo , Anopheles/genética , Drosophila melanogaster/enzimología , Femenino , Hemípteros/genética , Masculino , Transgenes
17.
Proc Natl Acad Sci U S A ; 109(16): 6147-52, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22460795

RESUMEN

In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.


Asunto(s)
Anopheles/genética , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Animales , Anopheles/crecimiento & desarrollo , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/metabolismo , DDT/metabolismo , DDT/farmacología , Femenino , Perfilación de la Expresión Génica , Ghana , Humanos , Proteínas de Insectos/metabolismo , Insectos Vectores/efectos de los fármacos , Insectos Vectores/genética , Insectos Vectores/crecimiento & desarrollo , Insecticidas/clasificación , Insecticidas/metabolismo , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Piretrinas/metabolismo , Piretrinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
PLoS Genet ; 4(11): e1000286, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19043575

RESUMEN

Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated enzyme metabolises both alpha-cyano and non-alpha-cyano pyrethroids. This is the first study to demonstrate the capacity of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic basis of insecticide resistance in wild mosquito populations.


Asunto(s)
Anopheles/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Insectos/metabolismo , Insecticidas/metabolismo , Permetrina/metabolismo , Animales , Anopheles/efectos de los fármacos , Anopheles/genética , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Escherichia coli/metabolismo , Genotipo , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Permetrina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...