Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(4): 1086-1100, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633591

RESUMEN

Here, we demonstrate a structure-based small molecule virtual screening and lead optimization pipeline using a homology model of a difficult-to-drug G-protein-coupled receptor (GPCR) target. Protease-activated receptor 4 (PAR4) is activated by thrombin cleavage, revealing a tethered ligand that activates the receptor, making PAR4 a challenging target. A virtual screen of a make-on-demand chemical library yielded a one-hit compound. From the single-hit compound, we developed a novel series of PAR4 antagonists. Subsequent lead optimization via simultaneous virtual library searches and structure-based rational design efforts led to potent antagonists of thrombin-induced activation. Interestingly, this series of antagonists was active against PAR4 activation by the native protease thrombin cleavage but not the synthetic PAR4 agonist peptide AYPGKF.

2.
ACS Chem Neurosci ; 12(24): 4524-4534, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34855359

RESUMEN

The detailed pharmacology and therapeutic potential of the central PAR4 receptors are poorly understood due to a lack of potent, selective, and brain-penetrant tool compounds. Despite this, robust data with biochemical and genetic tools show the therapeutic potential of PAR4 antagonists in traumatic brain injury, Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders with a neuroinflammatory component. Thus, we performed a functional HTS campaign, identified a fundamentally new PAR4 competitive inhibitor chemotype, optimized this new series (increased potency >45-fold), discovered enantiospecific activity (though opposing preference for human versus mouse PAR4), and engendered high central nervous system penetration (rat Kp's of 0.52 to 4.2 and Kp,uu's of 0.52 to 1.2).


Asunto(s)
Sistema Nervioso Central , Receptores de Trombina , Animales , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Ratones , Ratas , Receptores de Trombina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...