Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Res ; 94(10): 1310-7, 2004 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-15105295

RESUMEN

Atherosclerosis is the leading cause of death in the United States, and human cytomegalovirus (HCMV), a member of the herpes virus family, may play a role in the development of the disease. We previously showed that HCMV regulated endothelial apoptosis. In this study, we investigated the induction of apoptosis and signal transduction pathways regulating this process in HCMV-infected endothelial cells. As observed previously, HCMV induced a typical cytopathic effect in human aortic endothelial cells (HAECs), ie, the formation of single nucleated or multinucleated giant cells. Although infected HAECs were resistant to apoptosis at earlier stages of infection, they became apoptotic with prolonged infection as demonstrated by positive staining using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). This apoptotic process was mediated by the caspase-dependent mitochondrial apoptotic pathway as indicated by increased expression and cleavage of caspases 3 and 9 as well as increased expressions of pro-apoptotic molecules Bax and Bak. Blocking caspases 3 or 9 significantly inhibited the HCMV-induced apoptosis. Further exploration of the upstream pathway demonstrated upregulation of the tumor suppressor p53 gene and activation of the ataxia telangiectasia mutant (ATM) pathway in the infected cells. Blocking p53 inhibited HCMV-stimulated Bax and Bak expression as well as caspase-3 activation and blocking the ATM pathway inhibited HCMV-stimulated p53 activation. Although early infection may render cells antiapoptotic, prolonged infection, however, induced endothelial apoptosis through ATM and p53-dependent activation of the mitochondrial death pathway. This proapoptotic effect may be relevant to endothelial dysfunction and HCMV-associated vascular diseases.


Asunto(s)
Apoptosis , Citomegalovirus/patogenicidad , Endotelio Vascular/virología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Caspasas/metabolismo , Proteínas de Ciclo Celular , Daño del ADN , Proteínas de Unión al ADN , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...