Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endosc Int Open ; 10(8): E1147-E1154, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36082194

RESUMEN

Background and study aims Endoscopic optical diagnosis is crucial to the therapeutic strategy for early gastrointestinal cancer. It accurately (> 85 %) predicts pT category based on microsurface (SP) and vascular patterns (VP). However, interobserver variability is a major problem. We have visualized and digitalized the graded irregularities based on bioinformatically enhanced quantitative endoscopic image analysis (BEE) of high-definition white-light images. Methods In a pilot study of 26 large colorectal lesions (LCLs, mean diameter 39 mm), we retrospectively compared BEE variables with corresponding histopathology of the resected LCLs. Results We included 10 adenomas with low-grade intraepithelial neoplasia (LGIN), nine with high-grade intraepithelial neoplasia (HGIN) and early adenocarcinoma (EAC), and seven deeply submucosal invasive carcinomas. Quantified density (d) and nonuniformity (C U ) of vascular and surface structures correlated with histology (r s d VP: -0.77, r s C U VP: 0.13, r s d SP: -0.76, and r s C U SP: 0.45, respectively). A computed BEE score showed a sensitivity and specificity of 90 % and 100 % in the group with LGINs, 89 % and 41 % in the group with HGINs and EACs, and 100 % and 95 % in the group with deeply invasive carcinoma, respectively. Conclusions In this pilot study, BEE showed promise as a tool for endoscopic characterization of LCLs during routine endoscopy. Prospective clinical studies are needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...