Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Crit Rev Oncol Hematol ; 199: 104381, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735504

RESUMEN

INTRODUCTION AND PURPOSE: With a significant global impact, treatment of gastrointestinal (GI) cancers still presents with challenges, despite current multimodality approaches in advanced stages. Clinical trials are expanding for checkpoint inhibition (ICI) combined with radiation therapy (RT). This review intends to offer a comprehensive image of the current data regarding the effectiveness of this association, and to reflect on possible directions to further optimize the results. RESULTS: Several early phase studies demonstrated encouraging potential. However, translating preclinical outcomes to clinical settings proves challenging, especially in immunologically "cold" environments. GI cancers exhibit heterogeneity, requiring tailored approaches based on disease stage and patient characteristics. Current results, though promising, lack the power of evidence to influence the general practice. CONCLUSIONS: Finding biomarkers for identifying or converting resistant cancers is essential for maximizing responses, moreover in this context strategic RT parameters need to be carefully considered. Our review emphasizes the significance of having a thorough grasp of how immunology, tumour biology, and treatment settings interact in order to propose novel research avenues and efficient GI cancer therapy.


Asunto(s)
Neoplasias Gastrointestinales , Inmunoterapia , Humanos , Neoplasias Gastrointestinales/radioterapia , Neoplasias Gastrointestinales/terapia , Neoplasias Gastrointestinales/inmunología , Neoplasias Gastrointestinales/patología , Inmunoterapia/métodos , Terapia Combinada/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
Nat Commun ; 15(1): 3413, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649740

RESUMEN

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.


Asunto(s)
Condensados Biomoleculares , Simulación de Dinámica Molecular , Dispersión del Ángulo Pequeño , Condensados Biomoleculares/química , Recuperación de Fluorescencia tras Fotoblanqueo , Difracción de Neutrones , Sustancias Macromoleculares/química , Proteínas/química
3.
bioRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-37873180

RESUMEN

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.

4.
J Mol Biol ; 436(4): 168380, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061626

RESUMEN

Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.


Asunto(s)
Antivirales , Condensados Biomoleculares , Virosis , Replicación Viral , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Condensados Biomoleculares/efectos de los fármacos , Virosis/tratamiento farmacológico , Virosis/virología , Replicación Viral/efectos de los fármacos , Descubrimiento de Drogas
5.
Res Sq ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37886520

RESUMEN

The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids.

6.
Nat Commun ; 14(1): 6008, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770423

RESUMEN

Fusion oncoproteins (FOs) arise from chromosomal translocations in ~17% of cancers and are often oncogenic drivers. Although some FOs can promote oncogenesis by undergoing liquid-liquid phase separation (LLPS) to form aberrant biomolecular condensates, the generality of this phenomenon is unknown. We explored this question by testing 166 FOs in HeLa cells and found that 58% formed condensates. The condensate-forming FOs displayed physicochemical features distinct from those of condensate-negative FOs and segregated into distinct feature-based groups that aligned with their sub-cellular localization and biological function. Using Machine Learning, we developed a predictor of FO condensation behavior, and discovered that 67% of ~3000 additional FOs likely form condensates, with 35% of those predicted to function by altering gene expression. 47% of the predicted condensate-negative FOs were associated with cell signaling functions, suggesting a functional dichotomy between condensate-positive and -negative FOs. Our Datasets and reagents are rich resources to interrogate FO condensation in the future.


Asunto(s)
Condensados Biomoleculares , Proteínas de Fusión Oncogénica , Humanos , Células HeLa , Carcinogénesis , Transformación Celular Neoplásica
7.
Nat Methods ; 20(5): 673-676, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024650

RESUMEN

The discovery of biomolecular condensates transformed our understanding of intracellular compartmentalization of molecules. To integrate interdisciplinary scientific knowledge about the function and composition of biomolecular condensates, we developed the crowdsourcing condensate database and encyclopedia ( cd-code.org ). CD-CODE is a community-editable platform, which includes a database of biomolecular condensates based on the literature, an encyclopedia of relevant scientific terms and a crowdsourcing web application. Our platform will accelerate the discovery and validation of biomolecular condensates, and facilitate efforts to understand their role in disease and as therapeutic targets.


Asunto(s)
Colaboración de las Masas , Bases de Datos Factuales , Programas Informáticos
8.
J Mol Biol ; 435(5): 167971, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36690068

RESUMEN

In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1-3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4-7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ∼25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates.


Asunto(s)
Condensados Biomoleculares , Enfermedad , Transición de Fase , Humanos
9.
Diagnostics (Basel) ; 13(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672985

RESUMEN

Metastatic lesions of the spine occur in up to 40% of cancer patients and are a frequent source of pain and neurologic deficit due to cord compression. Palliative radiotherapy is the main first-intent local treatment in the form of single-fraction radiotherapy or fractionated courses. Reirradiation is a viable option for inoperable patients where spinal decompression is needed but with an increased risk of radiation-induced myelopathy (RM) and subsequent neurologic damage. This review summarizes reported data on local treatment options after initial irradiation in patients with relapsed spine metastasis and key dosimetric correlations between the risk of spinal cord injury and reirradiation technique, total dose, and time between treatments. The Linear Quadratic (LQ) model was used to convert all the published doses into biologically effective doses and normalize them to EQD2. For 3D radiotherapy, authors used cumulative doses from 55.2 Gy2/2 to 65.5 Gy2/2 EQD2 with no cases of RM mentioned. We found little evidence of RM after SBRT in the papers that met our criteria of inclusion, usually at the median reported dose to critical neural tissue around 93.5 Gy2/2. There is a lack of consistency in reporting the spinal cord dose, which leads to difficulty in pooling data.

10.
Front Mol Biosci ; 9: 1007744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483537

RESUMEN

Biomolecular condensates are compartmentalized communities of biomolecules, which unlike traditional organelles, are not enclosed by membranes. Condensates play roles in diverse cellular processes, are dysfunctional in many disease states, and are often enriched in classically "undruggable" targets. In this review, we provide an overview for how drugs can modulate condensate structure and function by phenotypically classifying them as dissolvers (dissolve condensates), inducers (induce condensates), localizers (alter localization of the specific condensate community members) or morphers (alter the physiochemical properties). We discuss the growing list of bioactive molecules that function as condensate modifiers (c-mods), including small molecules, oligonucleotides, and peptides. We propose that understanding mechanisms of condensate perturbation of known c-mods will accelerate the discovery of a new class of therapies for difficult-to-treat diseases.

11.
Medicina (Kaunas) ; 58(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36143915

RESUMEN

Over the last years, repurposed agents have provided growing evidence of fast implementation in oncology treatment such as certain antimalarial, anthelmintic, antibiotics, anti-inflammatory, antihypertensive, antihyperlipidemic, antidiabetic agents. In this study, the four agents of choice were present in our patients' daily treatment for nonmalignant-associated pathology and have known, light toxicity profiles. It is quite common for a given patient's daily administration schedule to include two or three of these drugs for the duration of their treatment. We chose to review the latest literature concerning metformin, employed as a first-line treatment for type 2 diabetes; mebendazole, as an anthelmintic; atorvastatin, as a cholesterol-lowering drug; propranolol, used in cardiovascular diseases as a nonspecific inhibitor of beta-1 and beta-2 adrenergic receptors. At the same time, certain key action mechanisms make them feasible antitumor agents such as for mitochondrial ETC inhibition, activation of the enzyme adenosine monophosphate-activated protein kinase, amelioration of endogenous hyperinsulinemia, inhibition of selective tyrosine kinases (i.e., VEGFR2, TNIK, and BRAF), and mevalonate pathway inhibition. Despite the abundance of results from in vitro and in vivo studies, the only solid data from randomized clinical trials confirm metformin-related oncological benefits for only a small subset of nondiabetic patients with HER2-positive breast cancer and early-stage colorectal cancer. At the same time, clinical studies confirm metformin-related detrimental/lack of an effect for lung, breast, prostate cancer, and glioblastoma. For atorvastatin we see a clinical oncological benefit in patients and head and neck cancer, with a trend towards radioprotection of critical structures, thus supporting the role of atorvastatin as a promising agent for concomitant association with radiotherapy. Propranolol-related increased outcomes were seen in clinical studies in patients with melanoma, breast cancer, and sarcoma.


Asunto(s)
Antihelmínticos , Antimaláricos , Antineoplásicos , Neoplasias de la Mama , Diabetes Mellitus Tipo 2 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Metformina , Adenosina Monofosfato/uso terapéutico , Antagonistas Adrenérgicos beta/uso terapéutico , Antihelmínticos/uso terapéutico , Antibacterianos/uso terapéutico , Antihipertensivos/uso terapéutico , Antimaláricos/uso terapéutico , Antineoplásicos/uso terapéutico , Atorvastatina/uso terapéutico , Neoplasias de la Mama/patología , Colesterol , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipoglucemiantes/uso terapéutico , Masculino , Mebendazol/uso terapéutico , Metformina/uso terapéutico , Ácido Mevalónico/uso terapéutico , Propranolol/uso terapéutico , Proteínas Quinasas/metabolismo , Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf , Receptores Adrenérgicos beta 2/uso terapéutico , Tirosina
12.
Nat Rev Drug Discov ; 21(11): 841-862, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35974095

RESUMEN

In the past decade, membraneless assemblies known as biomolecular condensates have been reported to play key roles in many cellular functions by compartmentalizing specific proteins and nucleic acids in subcellular environments with distinct properties. Furthermore, growing evidence supports the view that biomolecular condensates often form by phase separation, in which a single-phase system demixes into a two-phase system consisting of a condensed phase and a dilute phase of particular biomolecules. Emerging understanding of condensate function in normal and aberrant cellular states, and of the mechanisms of condensate formation, is providing new insights into human disease and revealing novel therapeutic opportunities. In this Perspective, we propose that such insights could enable a previously unexplored drug discovery approach based on identifying condensate-modifying therapeutics (c-mods), and we discuss the strategies, techniques and challenges involved.


Asunto(s)
Condensados Biomoleculares , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Descubrimiento de Drogas
13.
Nat Chem Biol ; 18(10): 1041-1042, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35864334
14.
Nat Immunol ; 23(5): 757-767, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35437325

RESUMEN

LAG3 is an inhibitory receptor that is highly expressed on exhausted T cells. Although LAG3-targeting immunotherapeutics are currently in clinical trials, how LAG3 inhibits T cell function remains unclear. Here, we show that LAG3 moved to the immunological synapse and associated with the T cell receptor (TCR)-CD3 complex in CD4+ and CD8+ T cells, in the absence of binding to major histocompatibility complex class II-its canonical ligand. Mechanistically, a phylogenetically conserved, acidic, tandem glutamic acid-proline repeat in the LAG3 cytoplasmic tail lowered the pH at the immune synapse and caused dissociation of the tyrosine kinase Lck from the CD4 or CD8 co-receptor, which resulted in a loss of co-receptor-TCR signaling and limited T cell activation. These observations indicated that LAG3 functioned as a signal disruptor in a major histocompatibility complex class II-independent manner, and provide insight into the mechanism of action of LAG3-targeting immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Antígenos CD/inmunología , Complejo CD3/inmunología , Antígenos CD8/metabolismo , Antígenos de Histocompatibilidad Clase II , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Proteína del Gen 3 de Activación de Linfocitos
15.
Cancer Discov ; 12(4): 1152-1169, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903620

RESUMEN

NUP98 fusion oncoproteins (FO) are drivers in pediatric leukemias and many transform hematopoietic cells. Most NUP98 FOs harbor an intrinsically disordered region from NUP98 that is prone to liquid-liquid phase separation (LLPS) in vitro. A predominant class of NUP98 FOs, including NUP98-HOXA9 (NHA9), retains a DNA-binding homeodomain, whereas others harbor other types of DNA- or chromatin-binding domains. NUP98 FOs have long been known to form puncta, but long-standing questions are how nuclear puncta form and how they drive leukemogenesis. Here we studied NHA9 condensates and show that homotypic interactions and different types of heterotypic interactions are required to form nuclear puncta, which are associated with aberrant transcriptional activity and transformation of hematopoietic stem and progenitor cells. We also show that three additional leukemia-associated NUP98 FOs (NUP98-PRRX1, NUP98-KDM5A, and NUP98-LNP1) form nuclear puncta and transform hematopoietic cells. These findings indicate that LLPS is critical for leukemogenesis by NUP98 FOs. SIGNIFICANCE: We show that homotypic and heterotypic mechanisms of LLPS control NUP98-HOXA9 puncta formation, modulating transcriptional activity and transforming hematopoietic cells. Importantly, these mechanisms are generalizable to other NUP98 FOs that share similar domain structures. These findings address long-standing questions on how nuclear puncta form and their link to leukemogenesis. This article is highlighted in the In This Issue feature, p. 873.


Asunto(s)
Leucemia , Proteínas de Complejo Poro Nuclear , Carcinogénesis , Núcleo Celular , Niño , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Leucemia/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína 2 de Unión a Retinoblastoma
16.
Nature ; 581(7807): 209-214, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405004

RESUMEN

Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.


Asunto(s)
Espacio Intracelular/química , Espacio Intracelular/metabolismo , Orgánulos/química , Orgánulos/metabolismo , Termodinámica , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/deficiencia , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Transición de Fase , Proteínas de Unión a Poli-ADP-Ribosa/deficiencia , ARN Helicasas/deficiencia , Proteínas con Motivos de Reconocimiento de ARN/deficiencia , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN , Ribosomas/química , Ribosomas/metabolismo
17.
Pac Symp Biocomput ; 25: 207-218, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31797598

RESUMEN

Biomolecular condensates form through a process termed phase separation and play diverse roles throughout the cell. Proteins that undergo phase separation often have disordered regions that can engage in weak, multivalent interactions; however, our understanding of the sequence grammar that defines which proteins phase separate is far from complete. Here, we show that proteins that display a high density of charged tracts within intrinsically disordered regions are likely to be constituents of electrostatically organized biomolecular condensates. We scored the human proteome using an algorithm termed ABTdensity that quantifies the density of charged tracts and observed that proteins with more charged tracts are enriched in particular Gene Ontology annotations and, based upon analysis of interaction networks, cluster into distinct biomolecular condensates. These results suggest that electrostatically-driven, multivalent interactions involving charged tracts within disordered regions serve to organize certain biomolecular condensates through phase separation.


Asunto(s)
Biología Computacional , Proteoma , Humanos
18.
Mol Cell ; 74(4): 713-728.e6, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30981631

RESUMEN

Repeat expansion in the C9orf72 gene is the most common cause of the neurodegenerative disorder amyotrophic lateral sclerosis (C9-ALS) and is linked to the unconventional translation of five dipeptide-repeat polypeptides (DPRs). The two enriched in arginine, poly(GR) and poly(PR), infiltrate liquid-like nucleoli, co-localize with the nucleolar protein nucleophosmin (NPM1), and alter the phase separation behavior of NPM1 in vitro. Here, we show that poly(PR) DPRs bind tightly to a long acidic tract within the intrinsically disordered region of NPM1, altering its phase separation with nucleolar partners to the extreme of forming large, soluble complexes that cause droplet dissolution in vitro. In cells, poly(PR) DPRs disperse NPM1 from nucleoli and entrap rRNA in static condensates in a DPR-length-dependent manner. We propose that R-rich DPR toxicity involves disrupting the role of phase separation by NPM1 in organizing ribosomal proteins and RNAs within the nucleolus.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas Nucleares/genética , Secuencias Repetitivas de Aminoácido/genética , Esclerosis Amiotrófica Lateral/patología , Arginina/genética , Nucléolo Celular/química , Nucléolo Celular/genética , Dipéptidos/genética , Humanos , Nucleofosmina , Péptidos/genética , Poli A/genética , ARN Ribosómico/genética
19.
Nat Commun ; 9(1): 5064, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30498217

RESUMEN

The nucleolus, the site for ribosome biogenesis contains hundreds of proteins and several types of RNA. The functions of many non-ribosomal nucleolar proteins are poorly understood, including Surfeit locus protein 6 (SURF6), an essential disordered protein with roles in ribosome biogenesis and cell proliferation. SURF6 co-localizes with Nucleophosmin (NPM1), a highly abundant protein that mediates the liquid-like features of the granular component region of the nucleolus through phase separation. Here, we show that electrostatically-driven interactions between disordered regions of NPM1 and SURF6 drive liquid-liquid phase separation. We demonstrate that co-existing heterotypic (NPM1-SURF6) and homotypic (NPM1-NPM1) scaffolding interactions within NPM1-SURF6 liquid-phase droplets dynamically and seamlessly interconvert in response to variations in molecular crowding and protein concentrations. We propose a mechanism wherein NPM1-dependent nucleolar scaffolds are modulated by non-ribosomal proteins through active rearrangements of interaction networks that can possibly contribute to the directionality of ribosomal biogenesis within the liquid-like nucleolus.


Asunto(s)
Proteínas Nucleares/metabolismo , Ribosomas/metabolismo , Nucléolo Celular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Nucleofosmina , Biogénesis de Organelos , Unión Proteica , ARN Ribosómico/metabolismo
20.
J Mol Biol ; 430(23): 4773-4805, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30017918

RESUMEN

Membrane-less organelles are cellular structures which arise through the phenomenon of phase separation. This process enables compartmentalization of specific sets of macromolecules (e.g., proteins, nucleic acids), thereby regulating cellular processes by increasing local concentration, and modulating the structure and dynamics of their constituents. Understanding the connection between structure, material properties and function of membrane-less organelles requires inter-disciplinary approaches, which address length and timescales that span several orders of magnitude (e.g., Ångstroms to micrometer, picoseconds to hours). In this review, we discuss the wide variety of methods that have been applied to characterize the morphology, rheology, structure and dynamics of membrane-less organelles and their components, in vitro and in live cells.


Asunto(s)
Orgánulos/metabolismo , Proteínas/metabolismo , ARN Mensajero/metabolismo , Animales , Fenómenos Biofísicos , Perfilación de la Expresión Génica , Humanos , Transición de Fase , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA