Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 67(7): 3102-9, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11425728

RESUMEN

Since Pseudomonas aeruginosa is capable of biosynthesis of polyhydroxyalkanoic acid (PHA) and rhamnolipids, which contain lipid moieties that are derived from fatty acid biosynthesis, we investigated various fab mutants from P. aeruginosa with respect to biosynthesis of PHAs and rhamnolipids. All isogenic fabA, fabB, fabI, rhlG, and phaG mutants from P. aeruginosa showed decreased PHA accumulation and rhamnolipid production. In the phaG (encoding transacylase) mutant rhamnolipid production was only slightly decreased. Expression of phaG from Pseudomonas putida and expression of the beta-ketoacyl reductase gene rhlG from P. aeruginosa in these mutants indicated that PhaG catalyzes diversion of intermediates of fatty acid de novo biosynthesis towards PHA biosynthesis, whereas RhlG catalyzes diversion towards rhamnolipid biosynthesis. These data suggested that both biosynthesis pathways are competitive. In order to investigate whether PhaG is the only linking enzyme between fatty acid de novo biosynthesis and PHA biosynthesis, we generated five Tn5 mutants of P. putida strongly impaired in PHA production from gluconate. All mutants were complemented by the phaG gene from P. putida, indicating that the transacylase-mediated PHA biosynthesis route represents the only metabolic link between fatty acid de novo biosynthesis and PHA biosynthesis in this bacterium. The transacylase-mediated PHA biosynthesis route from gluconate was established in recombinant E. coli, coexpressing the class II PHA synthase gene phaC1 together with the phaG gene from P. putida, only when fatty acid de novo biosynthesis was partially inhibited by triclosan. The accumulated PHA contributed to 2 to 3% of cellular dry weight.


Asunto(s)
Aciltransferasas/metabolismo , Ácidos Grasos/biosíntesis , Glucolípidos/biosíntesis , Poliésteres/metabolismo , Pseudomonas aeruginosa/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa , Aciltransferasas/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Elementos Transponibles de ADN , Enoil-ACP Reductasa (NADH) , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Acido Graso Sintasa Tipo II , Ácidos Grasos/genética , Hidroliasas/genética , Hidroliasas/metabolismo , Mutación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas Recombinantes/metabolismo
2.
Appl Environ Microbiol ; 66(12): 5253-8, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11097899

RESUMEN

The genetic operon for propionic acid degradation in Salmonella enterica serovar Typhimurium contains an open reading frame designated prpE which encodes a propionyl coenzyme A (propionyl-CoA) synthetase (A. R. Horswill and J. C. Escalante-Semerena, Microbiology 145:1381-1388, 1999). In this paper we report the cloning of prpE by PCR, its overexpression in Escherichia coli, and the substrate specificity of the enzyme. When propionate was utilized as the substrate for PrpE, a K(m) of 50 microM and a specific activity of 120 micromol. min(-1). mg(-1) were found at the saturating substrate concentration. PrpE also activated acetate, 3-hydroxypropionate (3HP), and butyrate to their corresponding coenzyme A esters but did so much less efficiently than propionate. When prpE was coexpressed with the polyhydroxyalkanoate (PHA) biosynthetic genes from Ralstonia eutropha in recombinant E. coli, a PHA copolymer containing 3HP units accumulated when 3HP was supplied with the growth medium. To compare the utility of acyl-CoA synthetases to that of an acyl-CoA transferase for PHA production, PHA-producing recombinant strains were constructed to coexpress the PHA biosynthetic genes with prpE, with acoE (an acetyl-CoA synthetase gene from R. eutropha [H. Priefert and A. Steinbüchel, J. Bacteriol. 174:6590-6599, 1992]), or with orfZ (an acetyl-CoA:4-hydroxybutyrate-CoA transferase gene from Clostridium propionicum [H. E. Valentin, S. Reiser, and K. J. Gruys, Biotechnol. Bioeng. 67:291-299, 2000]). Of the three enzymes, PrpE and OrfZ enabled similar levels of 3HP incorporation into PHA, whereas AcoE was significantly less effective in this capacity.


Asunto(s)
Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Poliésteres/metabolismo , Secuencia de Bases , Clonación Molecular , Cartilla de ADN/genética , Genes Bacterianos , Operón , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética , Especificidad por Sustrato
3.
Appl Microbiol Biotechnol ; 53(2): 209-18, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10709984

RESUMEN

An (R)-trans-2,3-enoylacyl-CoA hydratase was purified to near-homogeneity from Rhodospirillum rubrum. Protein sequencing of enriched protein fractions allowed the construction of a degenerate oligonucleotide. The gene encoding the (R)-specific hydratase activity was cloned following three rounds of colony hybridization using the oligonucleotide, and overexpression of the gene in E. coli led to the purification of the enzyme to homogeneity. The purified enzyme used crotonyl-CoA, trans-2,3-pentenoyl-CoA, and trans-2,3-hexenoyl-CoA with approximately equal specificity as substrates in the hydration reaction. However, no activity was observed using trans-2,3-octenoyl-CoA as a substrate, but this compound did partially inhibit crotonyl-CoA hydration. Based on the nucleotide sequence, the protein has a monomeric molecular weight of 15.4 kDa and is a homotetramer in its native form as determined by gel filtration chromatography and native PAGE. The hydratase was expressed together with the PHA synthase from Thiocapsa pfennigii in E. coli strain DH5alpha. Growth of these strains on oleic acid resulted in the production of the terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) .


Asunto(s)
Enoil-CoA Hidratasa/genética , Genes Bacterianos , Hidroxiácidos/metabolismo , Rhodospirillum rubrum/genética , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Enoil-CoA Hidratasa/biosíntesis , Enoil-CoA Hidratasa/aislamiento & purificación , Escherichia coli/metabolismo , Expresión Génica , Cinética , Datos de Secuencia Molecular , Ácido Oléico , Sistemas de Lectura Abierta , Proteínas Recombinantes/biosíntesis , Rhodospirillum rubrum/enzimología , Alineación de Secuencia , Thiocapsa/enzimología , Thiocapsa/genética
4.
Nat Biotechnol ; 17(10): 1011-6, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10504704

RESUMEN

Poly(hydroxyalkanoates) are natural polymers with thermoplastic properties. One polymer of this class with commercial applicability, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) can be produced by bacterial fermentation, but the process is not economically competitive with polymer production from petrochemicals. Poly(hydroxyalkanoate) production in green plants promises much lower costs, but producing copolymer with the appropriate monomer composition is problematic. In this study, we have engineered Arabidopsis and Brassica to produce PHBV in leaves and seeds, respectively, by redirecting the metabolic flow of intermediates from fatty acid and amino acid biosynthesis. We present a pathway for the biosynthesis of PHBV in plant plastids, and also report copolymer production, metabolic intermediate analyses, and pathway dynamics.


Asunto(s)
Arabidopsis/metabolismo , Brassica/metabolismo , Poliésteres/metabolismo , Acilcoenzima A/biosíntesis , Aminación , Butiratos/metabolismo , Espectroscopía de Resonancia Magnética
5.
Int J Biol Macromol ; 25(1-3): 303-6, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10416678

RESUMEN

The genes encoding the polyhydroxyalkanoate (PHA) biosynthetic pathway in Ralstonia eutropha (3-ketothiolase, phaA or bktB; acetoacetyl-CoA reductase, phaB; and PHA synthase, phaC) were engineered for plant plastid targeting and expressed using leaf (e35S) or seed-specific (7s or lesquerella hydroxylase) promoters in Arabidopsis and Brassica. PHA yields in homozygous transformants were 12-13% of the dry mass in homozygous Arabidopsis plants and approximately 7% of the seed weight in seeds from heterozygous canola plants. When a threonine deaminase was expressed in addition to bktB, phaB and phaC, a copolyester of 3-hydroxybutyrate and 3-hydroxyvalerate was produced in both Arabidopsis and Brassica.


Asunto(s)
Acetil-CoA C-Aciltransferasa/metabolismo , Aciltransferasas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Arabidopsis/metabolismo , Cupriavidus necator/enzimología , Poliésteres/metabolismo , Acetil-CoA C-Aciltransferasa/genética , Aciltransferasas/genética , Oxidorreductasas de Alcohol/genética , Arabidopsis/genética , Cupriavidus necator/genética , Homocigoto , Modelos Moleculares , Estructura Molecular , Hojas de la Planta , Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/metabolismo , Semillas
6.
Metab Eng ; 1(3): 243-54, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10937939

RESUMEN

The production of polyhydroxyalkanoates in plants is an interesting commercial prospect due to lower carbon feedstock costs and capital investments. The production of poly-(3-hydroxybutyrate) has already been successfully demonstrated in plant plastids, and the production of more complex polymers is under investigation. Using a mathematical simulation model this paper outlines the theoretical prospects of producing the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-3HV)] in plant plastids. The model suggests that both the 3HV/3HB ratio and the copolymer production rate will vary considerably between dark and light conditions. Using metabolic control analysis we predict that the beta-ketothiolase predominately controls the copolymer production rate, but that the activity of all three enzymes influence the copolymer ratio. Dynamic simulations further suggest that controlled expression of the three enzymes at different levels may enable desirable changes in both the copolymer production rate and the 3HV/3HB ratio. Finally, we illustrate that natural variations in substrate and cofactor levels may have a considerable impact on both the production rate and the copolymer ratio, which must be taken into account when constructing a production system.


Asunto(s)
Plantas Modificadas Genéticamente/metabolismo , Poliésteres/metabolismo , Acetil-CoA C-Aciltransferasa/genética , Acetil-CoA C-Aciltransferasa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Bacterias/enzimología , Bacterias/genética , Reactores Biológicos , Biotecnología , Ingeniería Genética , Cinética , Luz , Modelos Biológicos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/efectos de la radiación , Plastidios/metabolismo
7.
J Bacteriol ; 180(8): 1979-87, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9555876

RESUMEN

Polyhydroxyalkanoates (PHAs) are a class of carbon and energy storage polymers produced by numerous bacteria in response to environmental limitation. The type of polymer produced depends on the carbon sources available, the flexibility of the organism's intermediary metabolism, and the substrate specificity of the PHA biosynthetic enzymes. Ralstonia eutropha produces both the homopolymer poly-beta-hydroxybutyrate (PHB) and, when provided with the appropriate substrate, the copolymer poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV). A required step in production of the hydroxyvalerate moiety of PHBV is the condensation of acetyl coenzyme A (acetyl-CoA) and propionyl-CoA to form beta-ketovaleryl-CoA. This activity has generally been attributed to the beta-ketothiolase encoded by R. eutropha phbA. However, we have determined that PhbA does not significantly contribute to catalyzing this condensation reaction. Here we report the cloning and genetic analysis of bktB, which encodes a beta-ketothiolase from R. eutropha that is capable of forming beta-ketovaleryl-CoA. Genetic analyses determined that BktB is the primary condensation enzyme leading to production of beta-hydroxyvalerate derived from propionyl-CoA. We also report an additional beta-ketothiolase, designated BktC, that probably serves as a secondary route toward beta-hydroxyvalerate production.


Asunto(s)
Acetil-CoA C-Aciltransferasa/metabolismo , Alcaligenes/enzimología , Polímeros/metabolismo , Acetil-CoA C-Aciltransferasa/genética , Acetil-CoA C-Aciltransferasa/aislamiento & purificación , Alcaligenes/genética , Secuencia de Aminoácidos , Secuencia de Bases , Genes Bacterianos , Prueba de Complementación Genética , Genotipo , Cinética , Datos de Secuencia Molecular , Plásmidos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
8.
J Nutr ; 126(3): 728-40, 1996 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-8598558

RESUMEN

The safety of 5-enolpyruvylshikimate-3-phosphate synthase enzyme derived from Agrobacterium sp. strain CP4 (CP4 EPSPS) was assessed. CP4 EPSPS is the only protein introduced by genetic manipulation that is expressed in glyphosate-tolerant soybeans, which are being developed to provide new weed-control options for farmers. Expression of this protein in plants imparts high levels of glyphosate tolerance. The safety of CP4 EPSPS was ascertained by evaluating both physical and functional characteristics. CP4 EPSPS degrades readily in simulated gastric and intestinal fluids, suggesting that this protein will be degraded in the mammalian digestive tract upon ingestion as a component of food or feed, There were no deleterious effects due to the acute administration of CP4 EPSPS to mice by gavage at a high dosage of 572 mg/kg body wt, which exceeds 1000-fold tha anticipated consumption level of food products potentially containing CP4 EPSPS protein. CP4 EPSPS does not pose any important allergen concerns because this protein does not possess characteristics typical of allergenic proteins. These data, in combination with seed compositional analysis and animal feeding studies, support the conclusion that glyphosate-tolerant soybean are as safe and nutritious as traditional soybeans currently being marketed.


Asunto(s)
Transferasas Alquil y Aril , Glycine max/enzimología , Rhizobium/enzimología , Transferasas/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferasa , Secuencia de Aminoácidos , Animales , Western Blotting , Brassica/enzimología , Brassica/genética , Digestión , Electroforesis en Gel de Poliacrilamida , Escherichia coli/enzimología , Escherichia coli/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glicina/análogos & derivados , Glicina/farmacología , Gossypium/enzimología , Gossypium/genética , Herbicidas/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Rhizobium/genética , Homología de Secuencia de Aminoácido , Glycine max/efectos de los fármacos , Glycine max/genética , Transferasas/química , Transferasas/toxicidad , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...