Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(2): 1288-1295, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38175191

RESUMEN

White-light emission with a single activator is an attractive function of phosphors. In this work, we investigated the photoluminescence properties of Ca5.7Y1.3Si7O16.7N3.3, which is a compound denoted as Ca4+xY3-xSi7O15+xN5-x discovered by our group, with Ce-activation using optical measurements and density functional theory (DFT) calculation. Samples showed a tunable emission from purple to white under ultraviolet (UV) light. In this compound, Ca and Y as well as anions are distributed disorderly, and Ca/Y ions occupy two crystallographically distinct sites; those sites are possible sites for Ce substitution. DFT calculation and structural refinement revealed that the tunable emission was generated by Ce at the crystallographically equivalent site but with distinct local structures caused by the disordering of cations and anions. As far as we know, this is the first report about a white-light-emitting phosphor with only Ce activation.

2.
Commun Chem ; 6(1): 159, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524908

RESUMEN

Chemical functionalisation of semiconducting single-walled carbon nanotubes (SWNTs) can tune their local band gaps to induce near-infrared (NIR) photoluminescence (PL). However, tuning the PL to telecommunication wavelengths (>1300 nm) remains challenging. The selective emergence of NIR PL at the longest emission wavelength of 1320 nm was successfully achieved in (6,5) SWNTs via cyclic perfluoroalkylation. Chiral separation of the functionalised SWNTs showed that this functionalisation was also effective in SWNTs with five different chiral angles. The local band gap modulation mechanism was also studied using density functional theory calculations, which suggested the effects of the addenda and addition positions on the emergence of the longest-wavelength PL. These findings increase our understanding of the functionalised SWNT structure and methods for controlling the local band gap, which will contribute to the development and application of NIR light-emitting materials with widely extended emission and excitation wavelengths.

3.
Langmuir ; 37(18): 5627-5634, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33900779

RESUMEN

Ultrathin nanoporous (NP) films are an emerging field for selective and effective ion/molecular separation and electrochemical sensing applications. We describe selective ion permeation in surface-functionalized ultrathin NP SiO2 films (NP SiO2-NH2). The ultrathin NP SiO2 films with ca. 8 nm thickness were prepared from silsesquioxane-containing blend polymer Langmuir-Blodgett films (nanosheets) using the photo-oxidation method. The porous SiO2 surface was modified with a pH-responsive amine-containing silane coupling agent. Selective ion permeation was demonstrated under acidic pH conditions (pH ≤ 6) using two equally sized redox probes: negative (Fe(CN)63-/4-) and positive (Ru(NH3)62+/3+) ions. The current density for Fe(CN)63-/4- decreased as the pH value increased to pH = 6, whereas it increased for Ru(NH3)62+/3+. Control measurements revealed that the probes can penetrate the pores of nonfunctionalized SiO2 films irrespective of pH values, indicating that both the size and the surface charge response contributed to selective ion permeation. Results obtained from this study pave the way for new applications in molecular separation and sensing applications based on ultrathin nanoporous films (<10 nm) and tailored surfaces.

4.
Nanotechnology ; 32(13): 135403, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33291090

RESUMEN

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a practical conducting polymer. The gel-film formation process produces a PEDOT:PSS organogel with a structure between a PEDOT:PSS water dispersion and a dried film. We found that this film has a high water-swelling ratio and thickens by a hitherto unreported factor of approximately 6600% as its swells to form a hydrogel. In this study, we investigated the drying behaviour of a hydrogel and an organogel with electrical properties to elucidate the internal structures of the gel responsible for the swelling and shrinkage behaviour with high expansion and contraction ratios. SEM revealed that the gel is composed of a 3D fibrillar network consisting of fibrils that are 4.6 ± 1.6 µm long and 0.63 ± 0.29 µm in diameter. This network plays a pivotal role in the conduction of electricity and swelling behaviour with high expansion ratios. The thickness of the gel decreased to 1/66 of its original value after drying on a substrate, while the total electrical resistance decreased by only 20%. The organogel exhibited the same drying behaviour as the hydrogel, which indicates that the network forms first in the organogel and is maintained in the subsequent swelling and drying processes. The electrical conductivity of the hydrogel increased from 9.0 ± 0.1 to 346.4 ± 1.2 S cm-1 under anisotropic shrinking from 3.1 ± 0.2 mm to 77.4 ± 3.3 µm. The network plays an important role as an enhanced swelling framework by providing effective pathways for the conduction of electricity.

5.
Langmuir ; 36(46): 14083-14091, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33147043

RESUMEN

Facile preparation of poly(vinylidene fluoride) (PVDF) homopolymer nanoparticles (NPs) with monodispersed size distribution and predominant ferroelectric phases was done in an interfacial nonsolvent (water/methanol)-solvent (dimethylformamide (DMF))-polymer (PVDF) ternary system using two interfacial nanoassembly methods. First, a fluidic liquid-liquid interface consisting of two miscible solvents was created by introducing nonsolvent (water) under the PVDF solution. After the interface was created, the interface moved up to the DMF phase direction; PVDF NPs were produced through nonsolvent-induced phase separation. As the water content decreased in the nonsolvent by mixing with methanol, PVDF structures changed from nanoparticles with 252 nm average diameter (PVDF NP-1) to a porous membrane through membrane-wrapped NPs. The phenomena were found to be related to the mutual affinity of solvent, nonsolvent, and PVDF. When an additional external force was introduced to the water-DMF-PVDF system through magnetic stirring (reprecipitation method), smaller PVDF NPs with 61.4 nm diameter were obtained (PVDF NP-2). Both the as-prepared PVDF NPs were demonstrated with the predominant ferroelectric (electroactive (EA)) phase up to 97-98% among crystalline phases, which is apparently the highest value ever reported for PVDF homopolymer NPs. It is noteworthy that PVDF NP-2 showed a higher ß phase ratio than that of PVDF NP-1, as proved using Fourier transform infrared (FT-IR) spectroscopy. Also, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements revealed that PVDF NP-1 exhibited higher crystallinity and that PVDF NP-2 underwent a well-separated two-step phase transition under heating. Results suggest that controlling interface formation with DMF and water plays a crucial role in manipulating ferroelectric PVDF nanostructures in terms of crystallinity and the ferroelectric ß phase-to-γ phase ratio.

6.
ACS Appl Mater Interfaces ; 12(45): 50784-50792, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33136357

RESUMEN

We demonstrate growth control of Cu-based metal-organic framework (MOF) (HKUST-1) thin films assembled by the layer-by-layer technique on polymer films. The crystallinity and crystal face of MOF thin films were found to be controlled by reaction sites in polymer films such as hydroxy groups (the (100) crystal face), carbonyl groups (the (111) crystal face), and amide groups (the (100) crystal face). The HKUST-1 film growth amount is highly correlated with the polar component of the surface free energy, indicating that polymer sites, which afford hydrogen and coordination bonding, are important for the initial adsorption of Cu complexes. We also demonstrated a resistive switching device application using an HKUST-1 thin film on the poly(vinyl alcohol) dip-coated film at 40 deposition cycles, which suggests that the HKUST-1 thin film serves as a resistive switching layer with good film formation capability.

7.
Langmuir ; 36(35): 10371-10378, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32841566

RESUMEN

This paper proposes a method of fabricating low-dimensional TiO2 nanofilms at room temperature under ambient pressure conditions. The titanium-containing polymer complex Ti-p(DDA/acac) was synthesized by reacting an amphiphilic copolymer (p(DDA/acac)) with a titanium complex. Its ultrathin films were prepared using the Langmuir-Blodgett (LB) technique. The monolayer was found to be free from hydrolysis and cross-linking side reactions, even at the air-water interface. The transferred LB films (nanosheets) were oxidized by ultraviolet irradiation at room temperature. The photo-oxidized material has an amorphous and porous structure with subnanometer-scale controllability (0.18 nm per layer). Photocatalytic performance was demonstrated by converting multilayered LB films of Ti-(DDA/acac) and the silicon-containing polymer p(DDA/SQ) into ultrathin hetero-multilayers of TiO2 and SiO2 under UV-O3 treatment. The scalability affords a uniform photopattern formation of photo-oxidized TiO2 films over several hundreds of micrometers.

8.
Nanoscale ; 12(11): 6263-6270, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32048703

RESUMEN

The effect of ultrasonic irradiation on the optical properties of single-walled carbon nanotubes (SWNTs) was investigated. Upon sonication in D2O in the presence of sodium dodecylbenzene sulfonate (SDBS) under air, red-shifted photoluminescence (PL) peaks at ∼1043 and ∼1118 nm were observed from the aqueous suspensions of (6,4) and (6,5)SWNTs, accompanied by a decrease in the intensity of the intrinsic PL peaks. Upon sonication with SDBS under an Ar atmosphere, the rate of spectral change increased with the sonication time and new PL peaks emerged at 1043, 1118, and 1221 nm. Meanwhile, upon the addition of 1-butanol, the PL peaks emerged only at 1043 nm and 1118 nm, while the emergence of the peak at 1221 nm was inhibited. On the other hand, a suspension with highly dispersed SWNTs was obtained upon sonication in the presence of sodium cholate without any change in the intrinsic optical properties of SWNTs. These experimental results reveal that the PL characteristics of SWNTs can be controlled by controlling the sonication conditions such as the type of surfactant used, the concentration of SWNTs, reaction environment, and the presence of an inhibitor such as 1-butanol.

9.
Biosci Biotechnol Biochem ; 84(4): 678-685, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31876261

RESUMEN

Hydrophobins are small, amphipathic proteins secreted by filamentous fungi. Hydrophobin RolA, which is produced by Aspergillus oryzae, attaches to solid surfaces, recruits the polyesterase CutL1, and consequently promotes hydrolysis of polyesters. Because this interaction requires the N-terminal, positively charged residue of RolA to be exposed on the solid surface, the orientation of RolA on the solid surface is important for recruitment. However, the process by which RolA forms the self-assembled structure at the interface remains unclear. Using the Langmuir-Blodgett technique, we analyzed the process by which RolA forms a self-assembled structure at the air-water interface and observed the structures on the hydrophobic or hydrophilic SiO2 substrates via atomic force microscopy. We found that RolA formed self-assembled films in two steps during phase transitions. We observed different assembled structures of RolA on hydrophilic and hydrophobic SiO2 substrates.


Asunto(s)
Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Dióxido de Silicio/metabolismo , Propiedades de Superficie , Agua/química
11.
Angew Chem Int Ed Engl ; 58(34): 11686-11690, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31251829

RESUMEN

Dibenzo[b,f]arsepins possessing severely distorted cores compared to those of other heteropins were synthesized. These derivatives exhibited dual photoluminescence in the green-to-red region (500-700 nm) and the near-ultraviolet region (<380 nm), which could be attributed to the planarization of the arsepin core in the lowest singlet excited (S1 ) state. The computational approach for the assessment of the aromatic indices revealed that the dibenzoarsepins studied show aromaticity (8π system) in the S1 states in line with Baird's rule. The lone pair electrons of the arsenic atoms play a crucial role in the aromaticity in the S1 states.

12.
Langmuir ; 35(24): 8052-8059, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31185575

RESUMEN

We describe a systematic approach for producing cellulose nanofiber (CNF) nanosheets using the Langmuir-Blodgett (LB) technique. The CNFs were obtained from sulfuric acid hydrolysis of commercially available microfibrillated cellulose. Needle-like CNFs, negatively charged by grafted sulfate groups, were maintained at the air-water interface, assisted by amphiphilic polymer, poly( N-dodecyl acrylamide) (pDDA). The CNFs produced a stable monolayer. The surface pressure increased steadily with a high collapse pressure of 50 mN m-1 when spread with formic acid and pDDA. The composite monolayers were transferred onto solid substrates as Y-type LB films using a vertical dipping method. Upstroke and downstroke transfer ratios of the films were, respectively, unity and 0.88, indicating that full coverage was achieved by the monolayer even for more than 200 layers. Results obtained using atomic force microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy showed that CNF nanosheets possess well-defined layer structures with average monolayer thickness of 5.3 nm. The relative amount of CNFs in the nanosheets was calculated as 62.6 wt % using the quartz crystal microbalance technique. The as-prepared nanosheets are optically transparent to visible light and have high hydrophobicity. In fact, the nanosheet transparency was higher than 88% at 600 nm wavelength for 24 layers. A miniscule amount of pDDA enables demonstration of free-standing CNF nanosheets with 1 cm width and 45.6 nm thickness (23 layers).

13.
Langmuir ; 35(9): 3302-3307, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30744379

RESUMEN

We report a biomimetic polyelectrolyte based on amphiphilic polymer nanosheet multilayer films. Copolymers of poly( N-dodecylacrylamide- co-vinylphosphonic acid) [p(DDA/VPA)] form a uniform monolayer at the air-water interface. By depositing such monolayers onto solid substrates using the Langmuir-Blodgett (LB) method, multilayer lamellae films with a structure similar to a bilayer membrane were fabricated. The proton conductivity at the hydrophilic interlayer of the lamellar multilayer films was studied by impedance spectroscopy under temperature- and humidity-controlled conditions. At 60 °C and 98% relative humidity (RH), the conductivity increased with increasing mole fraction of VPA ( n) up to 3.2 × 10-2 S cm-1 for n = 0.41. For a film with n = 0.45, the conductivity decreased to 2.2 × 10-2 S cm-1 despite the increase of proton sources. The reason for this decrease was evaluated by studying the effect of the distance between the VPAs ( lVPA) on the proton conductivity as well as their activation energy. We propose that for n = 0.41, lVPA is the optimal distance not only to form an efficient two-dimensional (2D) hydrogen bonding network but also to reorient water and VPA. For n = 0.45, on the other hand, the lVPA was too close for a reorientation. Therefore, we concluded that there should be an optimal distance to obtain high proton conductivity at the hydrophilic interlayer of such multilayer films.

14.
Inorg Chem ; 57(23): 14524-14531, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30417640

RESUMEN

Ce4+-based charge transfer phosphor is not common and has been reported mainly in Sr2CeO4 with an excitation band peaking at ∼290 nm, mismatching with the near-ultraviolet light emitting diodes. Herein, we report a new series of Ce4+-based compounds Sr4.4Ce2.6REZnO12 (RE = Y, La, and Eu) capable of photoluminescence induced by O2--Ce4+ charge transfer excitation under near-ultraviolet-visible light. The crystal structure of Sr4.4Ce2.6EuZnO12 was determined by single crystal X-ray diffraction. The RE = La and Y samples were confirmed to be iso-structure compounds of the RE = Eu sample by powder X-ray diffraction. By introducing highly covalent Zn2+-O2- bonds into the framework, the Ce4+-O2- bonds are lengthened due to the effect of the Ce4+-O2--Zn2+ stretch. The lengthened Ce4+-O2- bond weakens the repulsion of the electrons between Ce4+ and O2-, thereby lowering the charge transfer energy to the visible light region. Incorporation of Eu3+ into the present compounds realized red emission under near-ultraviolet-visible excitation by the O2--Ce4+ charge transfer followed by energy transfer to Eu3+.

15.
Org Lett ; 20(18): 5952-5955, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30207479

RESUMEN

Arsenic-containing heteropentacenes were synthesized for the first time; bibenzofuran, benzothienyl benzofuran, and bibenzothiophene were bridged by arsenic atoms. Their structures and properties were experimentally and computationally studied using X-ray crystallography, optical and electronic properties, aromaticity, charge carrier mobility, etc. The present findings on the novel class of heteroacenes will expand functional organic chemistry.

16.
Langmuir ; 34(36): 10491-10497, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30146888

RESUMEN

Precise integration of π-conjugated units is a key issue to achieve molecular (nano) electronic devices based on organic semiconductor materials. We specifically examine the Langmuir-Blodgett technique, which allows high-density integration of π-conjugated units. In this study, we designed a carbazole containing acrylamide-based homopolymer [poly(9-ethyl-3-carbazolyl acrylamide) (pCzAA)], in which the π-conjugated unit is connected with a hydrophilic amide unit directly as a side chain. Its Langmuir-Blodgett film formation properties were investigated. The pCzAA polymer took a stable monolayer formation in the presence of a small amount (ca. 10 mol %) of poly( N-dodecylacrylamide) (pDDA). Compared with amphiphilic carbazole-containing copolymers described in earlier reports, the direct connection of π-conjugated units through amide bonding enables the Cz content in monolayers to exceed that of the copolymer monolayers (ca. 30 mol %) dramatically. pCzAA:pDDA takes highly ordered layer structures toward the out-of-plane direction, although no structural order is formed in the in-plane direction. This method is a practical means to develop low-dimensional and high-density integration of π-conjugated units for molecular electronics.

17.
Langmuir ; 34(27): 8007-8014, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29939748

RESUMEN

We describe the synthesis, Langmuir-Blodgett (LB) film formation, and photo-oxidation of an organic-inorganic hybrid block copolymer consisting of N-dodecyl acrylamide (DDA) and silsesquioxane (SQ) comonomers [p(DDA/SQ26)- b-pDDA]. The copolymer was synthesized by reversible addition fragmentation chain transfer polymerization of DDA and SQ. Higher monolayer stability at the air-water interface was confirmed for p(DDA/SQ26)- b-pDDA. The p(DDA/SQ26)- b-pDDA monolayer was deposited onto solid substrates with a monolayer thickness of 2.3 nm. The photo-oxidized SiO2 nanofilm revealed its porous structure, which reflects phase-separated structures of p(DDA/SQ26)- b-pDDA, as confirmed using atomic force microscopy, quartz crystal microbalance, and cyclic voltammetry measurements. These results demonstrate that this preparation method using photo-oxidation of the organic-inorganic hybrid block copolymer LB film is promising for manipulating pore formations of inorganic oxide nanofilms.

18.
Nanotechnology ; 29(26): 26LT02, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29708100

RESUMEN

We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set-reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

19.
ACS Omega ; 3(10): 13694-13703, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458070

RESUMEN

A series of electron-accepting azaacene-type materials 1-4 with different kinds and degrees of intermolecular interactions were synthesized. Simple modification of the terminal substituents significantly modulated the photophysical and electrochemical properties. The degree of weak intermolecular interaction determined the emergence of a liquid crystalline (LC) phase for each compound. Dipole-dipole interaction, π-π interaction, and van der Waals interaction all contributed to stabilize the LC phase of 1 and 2. The introduction of strong hydrogen bonding interaction enabled the formation of a highly ordered LC phase in 4. Charge-transport properties of 1, 2, and 4 were also investigated.

20.
RSC Adv ; 8(15): 7963-7968, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35542040

RESUMEN

Ferroelectric poly(vinylidene fluoride)/semiconductive polythiophene (P3CPenT) blend monolayers were developed at varying blend ratios using the Langmuir-Blodgett technique. The multilayered blend nanosheets show much improved surface roughness that is more applicable for electronics applications than spin-cast films. Because of the precisely controllable bottom-up construction, semiconductive P3CPenT were well dispersed into the ferroelectric PVDF matrix. Moreover, the ferroelectric matrix contains almost 100% ß crystals: a polar crystal phase responsible for the ferroelectricity of PVDF. Both the good dispersion of semiconductive P3CPenT and the outstanding ferroelectricity of the PVDF matrix in the blend nanosheets guaranteed the success of ferroelectric organic non-volatile memories based on ferroelectricity-manipulated resistive switching with a fresh high ON/OFF ratio and long endurance to 30 days.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...