Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int. microbiol ; 27(2): 423-434, Abr. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-232290

RESUMEN

Candida spp. is a significant cause of topical and fungal infections in humans. In addition to Candida albicans, many non-albicans species such as C. krusei, C. glabrata, C. parapsilosis, C. tropicalis, C. guilliermondii cause severe infections. The main antifungal agents belong to three different classes, including azoles, polyenes, and echinocandins. However, resistance to all three categories of drugs has been reported. Therefore, there is an urgent need to search for other alternatives with antifungal activity. Many herbal extracts and compounds from natural sources show excellent antifungal activity. In this study, we used an oil extract from the fruits of Zanthoxylum armatum, which showed significant antifungal activity against various Candida spp. by two different methods—minimum inhibitory concentration (MIC) and agar diffusion. In addition, we attempted to explore the possible mechanism of action in C. albicans. It was found that the antifungal activity of Z. armatum oil is fungicidal and involves a decrease in the level of ergosterol in the cell membrane. The decrease in ergosterol level resulted in increased passive diffusion of a fluorescent molecule, rhodamine6G, across the plasma membrane, indicating increased membrane fluidity. The oil-treated cells showed decreased germ tube formation, an important indicator of C. albicans’ virulence. The fungal cells also exhibited decreased attachment to the buccal epithelium, the first step toward invasion, biofilm formation, and damage to oral epithelial cells. Interestingly, unlike most antifungal agents, in which the generation of reactive oxygen species is responsible for killing, no significant effect was observed in the present study. (AU)


Asunto(s)
Humanos , Candida , Micosis , Candida albicans , Candida glabrata , Candida parapsilosis , Candida tropicalis
2.
Drug Metab Pers Ther ; 39(1): 5-20, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469723

RESUMEN

INTRODUCTION: Cancer biomarkers have revolutionized the field of oncology by providing valuable insights into tumor changes and aiding in screening, diagnosis, prognosis, treatment prediction, and risk assessment. The emergence of "omic" technologies has enabled biomarkers to become reliable and accurate predictors of outcomes during cancer treatment. CONTENT: In this review, we highlight the clinical utility of biomarkers in cancer identification and motivate researchers to establish a personalized/precision approach in oncology. By extending a multidisciplinary technology-based approach, biomarkers offer an alternative to traditional techniques, fulfilling the goal of cancer therapeutics to find a needle in a haystack. SUMMARY AND OUTLOOK: We target different forms of cancer to establish a dynamic role of biomarkers in understanding the spectrum of malignancies and their biochemical and molecular characterization, emphasizing their prospective contribution to cancer screening. Biomarkers offer a promising avenue for the early detection of human cancers and the exploration of novel technologies to predict disease severity, facilitating maximum survival and minimum mortality rates. This review provides a comprehensive overview of the potential of biomarkers in oncology and highlights their prospects in advancing cancer diagnosis and treatment.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Estudios Prospectivos , Biomarcadores , Neoplasias/diagnóstico , Neoplasias/terapia , Biomarcadores de Tumor , Pronóstico
3.
Phytomedicine ; 124: 155286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38241906

RESUMEN

BACKGROUND: Fermented formulations are extensively used in Ayurveda due to several benefits like improved palatability, bioavailability, pharmacological potential, and shelf life. These formulations can also quench the heavy metals from the plant material and thus reduce the toxicity. Seeds of Silybum marianum (L.) Gaertn. are widely used for the management of many liver diseases. STUDY DESIGN AND METHODS: In the present study, we developed a novel fermented formulation of S. marianum seeds and evaluated parameters like safety (heavy metal analysis) and effectiveness (hepatoprotective). As the developed formulation's validation is crucial, the critical process variables (time, pH, and sugar concentration) are optimized for alcohol and silybin content using the Box-Behnken design (BBD). RESULTS: The response surface methodology coupled with BBD predicted the optimized conditions (fermentation time (28 days), pH 5.6, and sugar concentration (22.04%)) for the development of a fermented formulation of the selected herb. Moreover, the alcohol content (6.5 ± 0.9%) and silybin concentration (26.1 ± 2.1%) were confirmed in optimized formulation by GC-MS and HPTLC analysis. The optimized formulation was also analyzed for heavy metals (Pb, As, Hg, and Cd); their concentration is significantly less than the decoction of herbs. Further, the comparative evaluation of the developed formulation with the marketed formulation also confirmed that the fermented formulation's silybin concentration and percentage release were significantly enhanced. In addition, the developed fermented formulation's percentage recovery of HepG2 cell lines after treatment with CCl4 was significantly improved compared with the marketed formulation. CONCLUSION: It can be summarized that the developed fermented formulation improves safety and effectiveness compared to other market formulations. Finally, it can be concluded that the developed fermented formulation could be further explored as a better alternative for developing Silybum marianum preparation.


Asunto(s)
Metales Pesados , Silimarina , Silimarina/farmacología , Silybum marianum , Silibina , Semillas/química , Metales Pesados/análisis , Azúcares/análisis
4.
Int Microbiol ; 27(2): 423-434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37481507

RESUMEN

Candida spp. is a significant cause of topical and fungal infections in humans. In addition to Candida albicans, many non-albicans species such as C. krusei, C. glabrata, C. parapsilosis, C. tropicalis, C. guilliermondii cause severe infections. The main antifungal agents belong to three different classes, including azoles, polyenes, and echinocandins. However, resistance to all three categories of drugs has been reported. Therefore, there is an urgent need to search for other alternatives with antifungal activity. Many herbal extracts and compounds from natural sources show excellent antifungal activity. In this study, we used an oil extract from the fruits of Zanthoxylum armatum, which showed significant antifungal activity against various Candida spp. by two different methods-minimum inhibitory concentration (MIC) and agar diffusion. In addition, we attempted to explore the possible mechanism of action in C. albicans. It was found that the antifungal activity of Z. armatum oil is fungicidal and involves a decrease in the level of ergosterol in the cell membrane. The decrease in ergosterol level resulted in increased passive diffusion of a fluorescent molecule, rhodamine6G, across the plasma membrane, indicating increased membrane fluidity. The oil-treated cells showed decreased germ tube formation, an important indicator of C. albicans' virulence. The fungal cells also exhibited decreased attachment to the buccal epithelium, the first step toward invasion, biofilm formation, and damage to oral epithelial cells. Interestingly, unlike most antifungal agents, in which the generation of reactive oxygen species is responsible for killing, no significant effect was observed in the present study.


Asunto(s)
Antifúngicos , Zanthoxylum , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida , Especies Reactivas de Oxígeno , Frutas , Candida albicans , Pruebas de Sensibilidad Microbiana , Candida glabrata , Ergosterol/farmacología , Farmacorresistencia Fúngica
5.
Artículo en Inglés | MEDLINE | ID: mdl-37937554

RESUMEN

BACKGROUND: The most difficult kind of cancer to treat is brain cancer, which causes around 3% of all cancer-related deaths. The targeted delivery is improved with the use of technologies based on nanotechnology that are both safe and efficient. Because of this, there is now a lot of research being done on brain cancer treatments based on nanoformulations. OBJECTIVE: In this review, the author's primary aim is to elucidate the various nanomedicine for brain cancer therapy. The authors focus primarily on the advancement of nanotechnology in treating brain cancer (BC). This review article gives readers an up-to-date look at publications on sophisticated nanosystems in treating BC, including quantum dots (QDs), nanoparticles (NPs), polymeric micelles (PMs), dendrimers, and solid lipid nanoparticles (SLNs), among others. This article offers insight into the use of various nanotechnology-based systems for therapy as well as their potential in the future. This article also emphasizes the drawbacks of nanotechnology-based methods. Future perspectives for treating brain cancer using proteomics and biomimetic nanosystems are briefly discussed. CONCLUSION: In this review, we review several aspects of brain cancer therapy, including various nanomedicines, their challenges and future perspectives. Overall, this article gives a thorough overview of both the present state of brain cancer treatment options and the disease itself.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37904561

RESUMEN

Cancer is a complex, one of the fatal non-communicable diseases, and its treatment has enormous challenges, with variable efficacy of traditional anti-cancer agents. By 2025, it is expected that 420 million additional cases of cancer will be diagnosed yearly. However, among various types of cancer, brain cancer treatment is most difficult due to the presence of blood-brain barriers. Nowadays, phytoconstituents are gaining popularity because of their biosafety and low toxicity to healthy cells. This article reviews various aspects related to curcumin for brain cancer therapeutics, including epidemiology, the role of nanotechnology, and various challenges for development and clinical trials. Furthermore, it elaborates on the prospects of curcumin for brain cancer therapeutics. In this article, our objective is to illuminate the anti-cancer potential of curcumin for brain cancer therapy. Moreover, it also explores how to defeat its constraints of clinical application because of poor bioavailability, stability, and rapid metabolism. This review also emphasizes the possibility of curcumin for the cure of brain cancer using cuttingedge biotechnological methods based on nanomedicine. This review further highlights the recent patents on curcumin-loaded nanoformulations for brain cancer. Overall, this article provides an overview of curcumin's potential in brain cancer therapy by considering challenges to be overwhelmed and future prospective. Moreover, this review summarizes the reported literature on the latest research related to the utility of curcumin in brain cancer therapy and aims to provide a reference for advanced investigation on brain cancer treatment.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37537775

RESUMEN

BACKGROUND: Lung cancer is a foremost global health issue due to its poor diagnosis. The advancement of novel drug delivery systems and medical devices will aid its therapy. OBJECTIVE: In this review, the authors thoroughly introduce the ideas and methods for improving nanomedicine- based approaches for lung cancer therapy. This article provides mechanistic insight into various novel drug delivery systems (DDSs) including nanoparticles, solid lipid nanoparticles, liposomes, dendrimers, niosomes, and nanoemulsions for lung cancer therapy with recent research work. This review provides insights into various patents published for lung cancer therapy based on nanomedicine. This review also highlights the current status of approved and clinically tested nanoformulations for their treatment. METHODOLOGY: For finding scholarly related data for the literature search, many search engines were employed including PubMed, Science Direct, Google, Scihub, Google Scholar, Research Gate, Web of Sciences, and several others. Various keywords and phrases were used for the search such as "nanoparticles", "solid lipid nanoparticles", "liposomes", "dendrimers", "niosomes", "nanoemulsions", "lung cancer", "nanomedicine", "nanomaterial", "nanotechnology", "in vivo" and "in vitro". The most innovative and cutting-edge nanotechnology-based approaches that are employed in pre-clinical and clinical studies to address problems associated with lung cancer therapies are also mentioned in future prospects. A variety of problems encountered with current lung cancer therapy techniques that frequently led to inadequate therapeutic success are also discussed in the end. CONCLUSION: The development of nanoformulations at the pilot scale still faces some difficulties, but their prospects for treating lung cancer appear to be promising in the future. Future developments and trends are anticipated as the evaluation comes to a close.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37519201

RESUMEN

All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.

9.
Nanomedicine (Lond) ; 18(2): 145-168, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36938800

RESUMEN

Drug-loaded, brain-targeted nanocarriers could be a promising tool in overcoming the challenges associated with Alzheimer's disease therapy. These nanocargoes are enormously flexible to functionalize and facilitate the delivery of drugs to brain cells by bridging the blood-brain barrier and into brain cells. To date, modifications have included nanoparticles (NPs) coating with tunable surfactants/phospholipids, covalently attaching polyethylene glycol chains (PEGylation), and tethering different targeting ligands to cell-penetrating peptides in a manner that facilitates their entry across the BBB and downregulates various pathological hallmarks as well as intra- and extracellular signaling pathways. This review provides a brief update on drug-loaded, multifunctional nanocarriers and the therapeutic intervention of autophagy and stem cells in the management of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Nanomedicina , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Células Madre , Autofagia
10.
Artículo en Inglés | MEDLINE | ID: mdl-36734912

RESUMEN

Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.


Asunto(s)
Antineoplásicos , Ciclodextrinas , Nanopartículas , Humanos , Ciclodextrinas/química , Liposomas , Micelas , Nanopartículas/química , Solubilidad
11.
Polymers (Basel) ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771843

RESUMEN

The goal of current research was to develop a new form of effective drug, curcumin-loaded solid lipid nanoparticles (Cur-SLNs) and test its efficacy in the treatment of lung cancer. Different batches of SLNs were prepared by the emulsification-ultrasonication method. For the optimization of formulation, each batch was evaluated for particle size, polydispersity index (PI), zeta potential (ZP), entrapment efficiency (EE) and drug loading (DL). The formulation components and process parameters largely affected the quality of SLNs. The SLNs obtained with particle size, 114.9 ± 1.36 nm; PI, 0.112 ± 0.005; ZP, -32.3 ± 0.30 mV; EE, 69.74 ± 2.03%, and DL, 0.81 ± 0.04% was designated as an optimized formulation. The formulation was freeze-dried to remove excess water to improve the physical stability. Freeze-dried Cur-SLNs showed 99.32% of drug release and demonstrated a burst effect trailed by sustained release up to 120 h periods. The erythrocyte toxicity study of Cur-SLNs and its components demonstrated moderate hemolytic potential towards red blood cells (RBCs). The cytotoxic potential of the formulation and plain curcumin was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against A549 cell line. After 48 h of incubation, Cur-SLNs demonstrated more cytotoxicity (IC50 = 26.12 ± 1.24 µM) than plain curcumin (IC50 = 35.12 ± 2.33 µM). Moreover, the cellular uptake of curcumin was found to be significantly higher from Cur-SLNs (682.08 ± 6.33 ng/µg) compared to plain curcumin (162.4 ± 4.2 ng/µg). Additionally, the optimized formulation was found to be stable over the period of 90 days of storage. Hence, curcumin-loaded SLNs can be prepared using the proposed cost effective method, and can be utilized as an effective drug delivery system for the treatment of lung cancer, provided in vivo studies warrant a similar outcome.

12.
Recent Pat Nanotechnol ; 17(3): 190-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35142273

RESUMEN

BACKGROUND: Controlled drug release and site-specific delivery of drugs make nanocapsules the most approbative drug delivery system for various kinds of drugs, bioactive, protein, and peptide compounds. Nanocapsules (NCs) are spherical shape microscopic shells consisting of a core (solid or liquid) in which the drug is positioned in a cavity enclosed by a distinctive polymeric membrane. OBJECTIVES: The main objective of the present patent study is to elaborate on various formulation techniques and methods of nanocapsules (NCs). The review also spotlights various biomedical applications as well as on the patents of NCs to date. METHODS: The review was extracted from the searches performed using various search engines such as PubMed, Google Patents, Medline, Google Scholars, etc. In order to emphasize the importance of NCs, some published patents of NCs have also been reported in the review. RESULTS: NCs are tiny magical shells having incredible reproducibility. Various techniques can be used to formulate NCs. The pharmaceutical performance of the formulated NCs can be judged by evaluating their shape, size, entrapment efficiency, loading capacity, etc., using different analytical techniques. Their main applications are found in the field of agrochemicals, genetic manipulation, cosmetics, hygiene items, strategic distribution of drugs to tumors, nanocapsule bandages to combat infection, and radiotherapy. CONCLUSION: In the present review, our team made a deliberate effort to summarize the recent advances in the field of NCs and focus on new patents related to the implementation of NCs delivery systems in the area of some life-threatening disorders like diabetes, cancer, and cardiovascular diseases.


Asunto(s)
Nanocápsulas , Nanocápsulas/química , Reproducibilidad de los Resultados , Patentes como Asunto , Sistemas de Liberación de Medicamentos , Polímeros/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-35319390

RESUMEN

Even today, cancer is one of the prominent leading causes of death worldwide. However, there are a couple of treatment options available for management, but the adverse effects are more prominent as compared to therapeutic effects. Therefore, there is a need to design some midway that may help to bypass the negative effects or lower their severity. Nanotechnology has addressed many issues, still many miles are needed to cover before reaching the center stage. The developed nanoformulations can target distant organs owing to their multifunctionality and targeting potential. Stimuli-responsive nanomedicine is one of the most exploited formulations. They can encapsulate and release the drugs for a higher period. However, they release a burst mechanism. The other nanoformulations contain dendrimers, micelles, and lipid-based nano-formulations that have been developed and evaluated for their efficacy in cancer treatment. This review paper highlights some significant patents granted/applied in various patent offices around the globe to treat cancer using the nanotechnology. The Google Patent, United States Patent and Trademark Office (USPTO), Escapenet, and many others were used as the search engine for patent search, and data were collected and analyzed. They used these patented technologies for diagnostic and treatment options, enhancing the absorption, distribution, metabolism, and excretion (ADME) profile of therapeutic molecules.


Asunto(s)
Neoplasias , Patentes como Asunto , Humanos , Nanomedicina , Neoplasias/tratamiento farmacológico
14.
Curr Drug Deliv ; 20(9): 1241-1261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35598245

RESUMEN

Nanotechnology has attracted researchers around the globe owing to the small size and targeting properties of the drug delivery vectors. The interest in self-nanoemulsifying drug delivery systems (SNEDDS) has shown an exponential increase from the formulator's point of view. SNEDDS have shown wide applicability in terms of controlled and targeted delivery of various types of drugs. They chemically consist of oil, surfactants and co-surfactants that decrease the emulsion particle size to the range of <100 nm. However, stability issues such as drug precipitation during storage, incompatibility of ingredients in shell, decrease their application for the long run and these issues have been highlighted in this paper. The current review throws limelight on the biological aspects and process parameters. In addition, the process of absorption from GI is also discussed in detail. SNEDDS have been utilized as a treatment option for various diseases like cancer, diabetes, and ocular and pulmonary diseases. Along with this, the authors highlight the advances involving in vivo and in vitro lipolysis studies on SNEDDS, also highlighting recent innovations in this field, such as novel combinations of drug-free solid SNEDDS + solid dispersions, lipid-modified chitosan containing mucoadhesive SNEDDS, pHsensitive SNEDDS and several others.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Tensoactivos/química , Emulsiones/química , Nanotecnología , Tamaño de la Partícula , Nanopartículas/química , Solubilidad , Disponibilidad Biológica , Administración Oral
15.
Front Plant Sci ; 13: 987986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388547

RESUMEN

Nardostachys jatamansi (D. Don) DC is a highly valued medicinal herb that has been used in traditional medicinal systems for its remedial effects. Owing to the over-exploitation and unethical trade of N. jatamansi, the accelerating global demand of herbal products from this plant cannot be satisfied by the conventional extraction approach. In view of the progressive demand and incredible biological potential of herb, the present research was designed to optimize various extraction parameters for microwave-assisted extraction (MAE). The extracts obtained from the traditional and green approach were also assessed for the recovery of secondary metabolites and anti-Alzheimer's potential. Various parameters like microwave power, temperature, and time of irradiation were optimized for MAE using Box Behkhen Design (BBD) The scanning electron microscopy of different plant samples was also done to observe the effect of microwave radiations. Further, the metabolite profiling of different extracts was also done by gas chromatography-mass spectrometry (GC-MS) analysis. Also the different behavioral and biochemical parameters along with acetylcholinesterase (AChE) inhibitory potential were assessed to evaluate the anti-Alzheimer's potential. Optimized parameters for MAE were found to be as microwave power 187.04 W, temperature 90°C, and irradiation time 20 min. The extract yield in MAE was significantly enhanced as compared to the conventional method. Also, the total phenolic content and total flavonoid content (TFC) were improved pointedly from 32.13 ± 0.55 to 72.83 ± 1.1 mg of GAE/g of extract and 21.7 ± 0.85 to 39.21 ± 0.7 mg of RUE/g of extract respectively. Later, the GC-MS analysis of various extracts confirmed the enhancement in the concentration of various sesquiterpenes like jatamansone, spirojatamol, valerenal, valeric acid, globulol, nootkatone and steroidal compounds such as sitosterol, ergosterol, stigmastanone, etc. in the optimized extract. A significant improvement in anti-Alzheimer's potential was also observed owing to the better concentration of secondary metabolites in the optimized microwave extract. From the current findings, it could be concluded that the MAE could be a successful and green alternative for the extraction and recovery of secondary metabolites from the selected medicinal herb.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36212972

RESUMEN

Due to an unhealthy lifestyle, gastric ulcers have become a very common disease these days. Moreover, the side effects linked with the prolonged use of conventional treatments have shifted the paradigm towards herbal therapies. The leaves of Morus alba L. (Family-Moraceae) have been traditionally used for a large number of metabolic diseases. In the present research, we focused on the development of chitosan microspheres using extracts of leaves of Morus alba L. and their evaluation for gastroprotective efficacy against ethanol-induced ulcers in experimental rats. The process of development of M. alba extract microsphere (MEM) is also optimized using the Box-Behnken design. The formulation was prepared at optimized conditions (chitosan concentration (1.66% w/w), volume of glutaraldehyde (4.69 mL), and stirrer rotation per minute, RPM, 854.8), and the percentage yield (Y 1) of the resulted microspheres is ∼95% with an encapsulation efficiency (EE) of (Y 2(rutin)) ∼86%, Y 2(quercetin)) ∼85%, and particle size (Y 3) of ∼40 µm. The MEM prepared at optimized conditions can also be characterized for various parameters to ensure the uniformity of parameters. Also, the drug release studies indicated that the percentage release of rutin and quercetin from MEM was enhanced as compared to M. alba extract (ME) alone. Furthermore, in vivo analysis of the antiulcer potential of pretreatment with ME and MEM (500 mg/kg p.o.) in rats indicated that mucosal lesions, gastric juice volume, and total acidity were significantly altered as compared to ethanol-treated animals. Histopathology of tissue sections also confirmed the protection of gastric mucosa on pretreatment with MEM at 500 mg/kg p.o. On the basis of these findings, we can conclude that prepared microspheres can be used to develop a sustained release formulation of extract for the management of gastric ulcers. However, additional research is needed to establish the specific mechanisms of M. alba's antiulcer efficacy.

17.
Molecules ; 27(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36014565

RESUMEN

Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70-80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, ß-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.


Asunto(s)
Silimarina , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Flavonoides/metabolismo , Frutas , Silybum marianum/metabolismo , Silimarina/farmacología , Silimarina/uso terapéutico
18.
Ultrason Sonochem ; 89: 106133, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36037596

RESUMEN

Extracts from medicinal plants are generally obtained by conventional methods like percolation and maceration. Owing to limitations of traditional methods and to meet the rising demand of extracts, the development of new green approaches is need of hour. In the present research, we have developed an ultrasound-assisted extraction (UAE) method for the Nardostachys jatamansi (NJ) D. Don, DC roots and optimized the extraction parameters for possible improved extract yield. A multivariate optimization strategy using the Centre Composite Design coupled with response surface methodology was applied. A numerical optimization approach accurately predicted the extraction conditions (sonication time âˆ¼ 20 min, ethanol âˆ¼ 70 % and a liquid/solid ratio of about 21:1). Scanning electron microscopy of the plant samples after UAE also indicated the cavitation effect due to sound waves. GC-MS analysis of the optimized ultrasound extract (OUNJ) confirmed improvement in the concentration of various secondary metabolites like jatamansone (91.8 % increase), spirojatamol (42.3 % increase), globulol (130.4 % increase), sitosterol (84.6 % increase) as compared to the soxhlet extract (SXNJ). Different anti-oxidant parameters (DPPH, Glutathione, Catalase SOD and NO) were also significantly altered (p < 0.05) in the optimized extracts. The IC50 to inhibit acetylcholinesterase activity (AChE) in vitro and its concentration in brain homogenates were significantly (p < 0.05) improved by OUNJ extract as compared to the SXNJ ones. To conclude, we can say that established optimized conditions for UAE of N. jatamansi roots not only reduce the extraction time but also improved the pharmacological potential of the extracts.


Asunto(s)
Nardostachys , Acetilcolinesterasa , Antioxidantes/química , Antioxidantes/farmacología , Catalasa , Etanol/química , Glutatión , Nardostachys/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sitoesteroles , Sonicación , Superóxido Dismutasa
19.
Front Aging Neurosci ; 14: 960246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034142

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that affects a wide range of populations and is the primary cause of death in various countries. The treatment of AD is still restricted to oral conventional medicines that act only superficially. Fabrication of intranasal solid lipid nanoparticulate system for the uptake of therapeutic agents will act as a convincing approach with limited off-site toxicity and increased pharmacological activity. The objective of this study was to formulate, optimize, and evaluate the efficiency of rivastigmine tartrate (RT)-loaded intranasal solid lipid nanoparticles (SLNs) employing the solvent-evaporation diffusion method. To optimize the formulation parameters, the central composite design (CCD) was used. Lipid concentration (X1) and surfactant concentration (X2) were considered to be independent variables, while particle size (Y1), percentage entrapment efficiency (Y2), and percentage drug release (Y3) were considered as responses. The solid lipid was glyceryl monostearate, while the surfactant was polysorbate 80. The optimized formulation has a particle size of 110.2 nm, % entrapment efficiency of 82.56%, and % drug release of 94.86%. The incompatibility of drug excipients was established by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Nasal histopathology tests on sheep mucosa revealed that the developed SLNs were safe to utilize for intranasal delivery with no toxicity. Ex vivo permeation investigations revealed that the flux and diffusion coefficients for RT solid lipid nanoparticles and RT solution were 3.378 g/cm2 /h and 0.310-3 cm2 /h, respectively. Stability studies demonstrated that the developed SLNs were stable when stored under various storage conditions. The viability and vitality of adopting a lipid particle delivery system for improved bioavailability via the intranasal route were also established in the in vivo pharmacokinetic investigations. According to the histopathological and pharmacokinetic investigations, the developed formulations were safe, non-lethal, efficient, and robust. These results suggest the potentiality provided by rivastigmine tartrate-loaded solid lipid nanoparticles for nasal delivery.

20.
Membranes (Basel) ; 12(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35877916

RESUMEN

The present work highlights the suitability of an oil-based nanocarrier to deliver quercetin (Q) and curcumin (C) through the intravenous route for treatment of breast cancer. The nanoemulsion prepared by the modified emulsification-solvent evaporation method resulted in particle size (<30 nm), polydispersity index (<0.2), zeta potential (<10 mV), optimum viscosity, high encapsulation efficiency and drug loading for both drugs. The pH and osmolarity of the nanoemulsion were about 7.0 and 280 mOsm, respectively, demonstrated its suitability for intravenous administration. In-vitro release of drugs from all the formulations demonstrated initial fast release followed by sustained release for a period of 48 h. The fabricated single and dual drug−loaded nanoemulsion (QNE, CNE, QC-NE) exhibited moderate hemolysis at a concentration of 50 µg/mL. The % hemolysis caused by all the formulations was similar to their individual components (p ˃ 0.05) and demonstrated the biocompatibility of the nanoemulsion with human blood. In vitro cytotoxic potential of single and dual drug−loaded nanoemulsions were determined against breast cancer cells (MF-7). The IC50 value for QNE and CNE were found to be 40.2 ± 2.34 µM and 28.12 ± 2.07 µM, respectively. The IC50 value for QC-NE was 21.23 ± 2.16 µM and demonstrated the synergistic effect of both the drugs. The internalization of the drug inside MF-7 cells was detected by cellular uptake study. The cellular uptake of QNE and CNE was approximately 3.9-fold higher than free quercetin and curcumin (p < 0.0001). This strategically designed nanoemulsion appears to be a promising drug delivery system for the proficient primary preclinical development of quercetin and curcumin as therapeutic modalities for the treatment of breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...