Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Animals (Basel) ; 12(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35565640

RESUMEN

There is evidence to suggest that the Coronavirus Disease 2019 (COVID-19) pandemic may hamper our achievement of the Sustainable Development Goals (SDGs). Here, we use non-human primates as a case study to examine the impacts of COVID-19 on the ability to achieve biodiversity conservation and management sustainability targets. We collected data through a survey of members of the IUCN SSC Primate Specialist Group from January to March 2022. Of the 93 experts that responded to our survey, we found that 39% had not been able to visit any of their field sites since March 2020, 54% said they had less funding available for their primate-related work, and only one out of ten said they had managed to achieve at least 76-100% of their planned primate-related work since March 2020. Six out of ten respondents (61%) felt that primate conservation efforts in protected areas were worse than before the onset of the COVID-19 pandemic and one-third (33%) felt hunting was happening more frequently than before. This study provides evidence of the impacts of COVID-19 on progress towards achieving the SDGs, and provides practical lessons learned for biodiversity conservation efforts moving forward.

3.
J Biogeogr ; 49(5): 979-992, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35506011

RESUMEN

Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.

5.
Conserv Biol ; 35(5): 1388-1395, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33484006

RESUMEN

Some conservation prioritization methods are based on the assumption that conservation needs overwhelm current resources and not all species can be conserved; therefore, a conservation triage scheme (i.e., when the system is overwhelmed, species should be divided into three groups based on likelihood of survival, and efforts should be focused on those species in the group with the best survival prospects and reduced or denied to those in the group with no survival prospects and to those in the group not needing special efforts for their conservation) is necessary to guide resource allocation. We argue that this decision-making strategy is not appropriate because resources are not as limited as often assumed, and it is not evident that there are species that cannot be conserved. Small population size alone, for example, does not doom a species to extinction; plants, reptiles, birds, and mammals offer examples. Although resources dedicated to conserving all threatened species are insufficient at present, the world's economic resources are vast, and greater resources could be dedicated toward species conservation. The political framework for species conservation has improved, with initiatives such as the UN Sustainable Development Goals and other international agreements, funding mechanisms such as The Global Environment Facility, and the rise of many nongovernmental organizations with nimble, rapid-response small grants programs. For a prioritization system to allow no extinctions, zero extinctions must be an explicit goal of the system. Extinction is not inevitable, and should not be acceptable. A goal of no human-induced extinctions is imperative given the irreversibility of species loss.


Asignación de Recursos para la Conservación, Resiliencia de Poblaciones Pequeñas y la Falacia del Triaje de Conservación Resumen Algunos métodos de priorización de la conservación están basados en el supuesto de que las necesidades de la conservación superan a los actuales recursos y que no todas las especies pueden ser conservadas; por lo tanto, se necesita un esquema de triaje (esto es, cuando el sistema está abrumado, las especies deben dividirse en tres grupos con base en su probabilidad de supervivencia y los esfuerzos deben enfocarse en aquellas especies dentro del grupo con las mejores probabilidades de supervivencia y a aquellas en el grupo sin probabilidades de supervivencia o aquellas en el grupo que no necesita esfuerzos especializados para su conservación se les deben reducir o negar los esfuerzos de conservación) para dirigir la asignación de recursos. Discutimos que esta estrategia para la toma de decisiones no es apropiada porque los recursos no están tan limitados como se asume con frecuencia y tampoco es evidente que existan especies que no puedan ser conservadas. Por ejemplo, tan sólo un tamaño poblacional pequeño no es suficiente para condenar a una especie a la extinción; contamos con ejemplos en plantas, reptiles, aves y mamíferos. Aunque actualmente todos los recursos dedicados a la conservación de todas las especies amenazadas son insuficientes, los recursos económicos mundiales son vastos y se podrían dedicar mayores recursos a la conservación de especies. El marco de trabajo político para la conservación de especies ha mejorado, con iniciativas como los Objetivos de Desarrollo Sustentable de la ONU y otros acuerdos internacionales, el financiamiento de mecanismos como el Fondo para el Medio Ambiente Mundial, y el surgimiento de muchas organizaciones no gubernamentales mediante programas de subsidios pequeños hábiles y de respuesta rápida. Para que un sistema de priorización no permita las extinciones, las cero extinciones deben ser un objetivo explícito del sistema. La extinción no es inevitable y no debería ser aceptable. El objetivo de cero extinciones inducidas por humanos es imperativo dada la irreversibilidad de la pérdida de especies.


Asunto(s)
Conservación de los Recursos Naturales , Triaje , Animales , Biodiversidad , Especies en Peligro de Extinción , Extinción Biológica , Mamíferos , Asignación de Recursos
7.
Curr Biol ; 30(12): R721-R735, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32574638

RESUMEN

Turtles and tortoises (chelonians) have been integral components of global ecosystems for about 220 million years and have played important roles in human culture for at least 400,000 years. The chelonian shell is a remarkable evolutionary adaptation, facilitating success in terrestrial, freshwater and marine ecosystems. Today, more than half of the 360 living species and 482 total taxa (species and subspecies combined) are threatened with extinction. This places chelonians among the groups with the highest extinction risk of any sizeable vertebrate group. Turtle populations are declining rapidly due to habitat loss, consumption by humans for food and traditional medicines and collection for the international pet trade. Many taxa could become extinct in this century. Here, we examine survival threats to turtles and tortoises and discuss the interventions that will be needed to prevent widespread extinction in this group in coming decades.


Asunto(s)
Conservación de los Recursos Naturales , Tortugas , Animales , Especies en Peligro de Extinción , Extinción Biológica , Dinámica Poblacional
10.
Mol Phylogenet Evol ; 132: 117-137, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30496844

RESUMEN

The taxonomy of the titi monkeys (Callicebinae) has recently received considerable attention. It is now recognised that this subfamily is composed of three genera with 33 species, seven of them described since 2002. Here, we describe a new species of titi, Plecturocebus, from the municipality of Alta Floresta, Mato Grosso, Brazil. We adopt an integrative taxonomic approach that includes phylogenomic analyses, pelage characters, and locality records. A reduced representation genome-wide approach was employed to assess phylogenetic relationships among species of the eastern Amazonian clade of the Plecturocebus moloch group. Using existing records, we calculated the Extent of Occurrence (EOO) of the new species and estimated future habitat loss for the region based on predictive models. We then evaluated the species' conservation status using the IUCN Red list categories and criteria. The new species presents a unique combination of morphological characters: (1) grey agouti colouration on the crown and dorsal parts; (2) entirely bright red-brown venter; (3) an almost entirely black tail with a pale tip; and (4) light yellow colouration of the hair on the cheeks contrasting with bright red-brown hair on the sides of the face. Our phylogenetic reconstructions based on maximum-likelihood and Bayesian methods revealed well-supported species relationships, with the Alta Floresta taxon as sister to P. moloch + P. vieirai. The species EOO is 10,166,653 ha and we predict a total habitat loss of 86% of its original forest habitat under a "business as usual" scenario in the next 24 years, making the newly discovered titi monkey a Critically Endangered species under the IUCN A3c criterion. We give the new titi monkey a specific epithet based on: (1) clear monophyly of this lineage revealed by robust genomic and mitochondrial data; (2) distinct and diagnosable pelage morphology; and (3) a well-defined geographical distribution with clear separation from other closely related taxa. Urgent conservation measures are needed to safeguard the future of this newly discovered and already critically endangered primate.


Asunto(s)
Pitheciidae/clasificación , Animales , Teorema de Bayes , Brasil , Citocromos b/genética , Ecosistema , Especies en Peligro de Extinción , Genoma , Mitocondrias/genética , Filogenia , Pitheciidae/anatomía & histología , Pitheciidae/genética , Polimorfismo de Nucleótido Simple
11.
PeerJ ; 6: e4869, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922508

RESUMEN

Primates occur in 90 countries, but four-Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)-harbor 65% of the world's primate species (439) and 60% of these primates are Threatened, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar, and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia, 62% for Madagascar, and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. Primates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, and actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range countries need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems.

12.
Mol Phylogenet Evol ; 120: 170-182, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29175546

RESUMEN

The pygmy marmoset, Cebuella pygmaea, the smallest of the New World monkeys, has one of the largest geographical distributions of the Amazonian primates. Two forms have been recognized: Cebuella pygmaea pygmaea (Spix, 1823), and C. p. niveiventris Lönnberg, 1940. In this study, we investigated if the separation of pygmy marmosets into these two clades can be corroborated by molecular data. We also examine and compare coloration of the pelage in light of the new molecular results. We analyzed the mtDNA cytochrome b gene and, for the first time for any Neotropical primate, we used a reduced representation genome sequencing approach (ddRADseq) to obtain data for recently collected, geographically representative samples from the Rio Japurá, a northern tributary of the Rio Solimões and from the Javarí, Jutaí, Juruá, Madeira and Purus river basins, all tributaries south of the Solimões. We estimated phylogenies and diversification times under both maximum likelihood and Bayesian inference criteria. Our analysis showed two highly supported clades, with intraclade divergences much smaller than interclade divergences, indicating two species of Cebuella: one from the Rio Japurá and one to the south of Solimões. The interpretation of our results in light of the current taxonomy is not trivial however. Lönnberg stated that the type of Spix's pygmy marmoset (type locality 'near Tabatinga') was obtained from the south of the Solimões, and his description of the distinct niveiventris from Lago Ipixuna, south of the Solimões and several hundred kilometres east of Tabatinga, was based on a comparison with specimens that he determined as typical pygmaea that were from the upper Rio Juruá (south of the Solimões). As such it remains uncertain whether the name pygmaea should be applicable to the pygmy marmosets north of the Rio Solimões (Tabatinga type locality) or south (near Tabatinga but across the Solimões). Finally, our analysis of pelage coloration revealed three phenotypic forms: (1) south of the Rio Solimoes, (2) Eirunepé-Acre, upper Juruá basin; and (3) Japurá. More samples from both sides of Solimões in the region of Tabatinga will be necessary to ascertain the exact type locality for Spix's pygmaea and to resolve the current uncertainties surrounding pygmy marmoset taxonomy.


Asunto(s)
Callithrix/clasificación , Animales , Teorema de Bayes , Callithrix/genética , Citocromos b/clasificación , Citocromos b/genética , Citocromos b/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Funciones de Verosimilitud , Masculino , Fenotipo , Filogenia , Análisis de Secuencia de ADN
13.
J Hered ; 108(2): 107-119, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28173059

RESUMEN

The family Lepilemuridae includes 26 species of sportive lemurs, most of which were recently described. The cryptic morphological differences confounded taxonomy until recent molecular studies; however, some species' boundaries remain uncertain. To better understand the genus Lepilemur, we analyzed 35 complete mitochondrial genomes representing all recognized 26 sportive lemur taxa and estimated divergence dates. With our dataset we recovered 25 reciprocally monophyletic lineages, as well as an admixed clade containing Lepilemur mittermeieri and Lepilemur dorsalis. Using modern distribution data, an ancestral area reconstruction and an ecological vicariance analysis were performed to trace the history of diversification and to test biogeographic hypotheses. We estimated the initial split between the eastern and western Lepilemur clades to have occurred in the Miocene. Divergence of most species occurred from the Pliocene to the Pleistocene. The biogeographic patterns recovered in this study were better addressed with a combinatorial approach including climate, watersheds, and rivers. Generally, current climate and watershed hypotheses performed better for western and eastern clades, while speciation of northern clades was not adequately supported using the ecological factors incorporated in this study. Thus, multiple mechanisms likely contributed to the speciation and distribution patterns in Lepilemur.


Asunto(s)
Especiación Genética , Genoma Mitocondrial , Lemuridae/clasificación , Filogenia , Animales , Clima , ADN Mitocondrial , Madagascar , Modelos Genéticos , Filogeografía
14.
Sci Adv ; 3(1): e1600946, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28116351

RESUMEN

Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats-mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world's primates and the costs of their loss to ecosystem health and human society is imperative.


Asunto(s)
Cercopithecidae , Ecosistema , Extinción Biológica , Animales
15.
Front Zool ; 13: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26937245

RESUMEN

BACKGROUND: Titi monkeys, Callicebus, comprise the most species-rich primate genus-34 species are currently recognised, five of them described since 2005. The lack of molecular data for titi monkeys has meant that little is known of their phylogenetic relationships and divergence times. To clarify their evolutionary history, we assembled a large molecular dataset by sequencing 20 nuclear and two mitochondrial loci for 15 species, including representatives from all recognised species groups. Phylogenetic relationships were inferred using concatenated maximum likelihood and Bayesian analyses, allowing us to evaluate the current taxonomic hypothesis for the genus. RESULTS: Our results show four distinct Callicebus clades, for the most part concordant with the currently recognised morphological species-groups-the torquatus group, the personatus group, the donacophilus group, and the moloch group. The cupreus and moloch groups are not monophyletic, and all species of the formerly recognized cupreus group are reassigned to the moloch group. Two of the major divergence events are dated to the Miocene. The torquatus group, the oldest radiation, diverged c. 11 Ma; and the Atlantic forest personatus group split from the ancestor of all donacophilus and moloch species at 9-8 Ma. There is little molecular evidence for the separation of Callicebus caligatus and C. dubius, and we suggest that C. dubius should be considered a junior synonym of a polymorphic C. caligatus. CONCLUSIONS: Considering molecular, morphological and biogeographic evidence, we propose a new genus level taxonomy for titi monkeys: Cheracebus n. gen. in the Orinoco, Negro and upper Amazon basins (torquatus group), Callicebus Thomas, 1903, in the Atlantic Forest (personatus group), and Plecturocebus n. gen. in the Amazon basin and Chaco region (donacophilus and moloch groups).

17.
Curr Biol ; 25(10): R431-8, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25989087

RESUMEN

Humans depend on biodiversity in myriad ways, yet species are being rapidly lost due to human activities. The ecosystem services approach to conservation tries to establish the value that society derives from the natural world such that the true cost of proposed development actions becomes apparent to decision makers. Species are an integral component of ecosystems, and the value they provide in terms of services should be a standard part of ecosystem assessments. However, assessing the value of species is difficult and will always remain incomplete. Some of the most difficult species' benefits to assess are those that accrue unexpectedly or are wholly unanticipated. In this review, we consider recent examples from a wide variety of species and a diverse set of ecosystem services that illustrate this point and support the application of the precautionary principle to decisions affecting the natural world.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Agentes de Control Biológico , Bivalvos , Secuestro de Carbono , Conservación de los Recursos Naturales , Cultura , Ecología/economía , Humanos , Calidad del Agua , Humedales
18.
PLoS One ; 9(11): e111671, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25372894

RESUMEN

The development and private sectors are increasingly considering "biodiversity offsets" as a strategy to compensate for their negative impacts on biodiversity, including impacts on great apes and their habitats in Africa. In the absence of national offset policies in sub-Saharan Africa, offset design and implementation are guided by company internal standards, lending bank standards or international best practice principles. We examine four projects in Africa that are seeking to compensate for their negative impacts on great ape populations. Our assessment of these projects reveals that not all apply or implement best practices, and that there is little standardization in the methods used to measure losses and gains in species numbers. Even if they were to follow currently accepted best-practice principles, we find that these actions may still fail to contribute to conservation objectives over the long term. We advocate for an alternative approach in which biodiversity offset and compensation projects are designed and implemented as part of a National Offset Strategy that (1) takes into account the cumulative impacts of development in individual countries, (2) identifies priority offset sites, (3) promotes aggregated offsets, and (4) integrates biodiversity offset and compensation projects with national biodiversity conservation objectives. We also propose supplementary principles necessary for biodiversity offsets to contribute to great ape conservation in Africa. Caution should still be exercised, however, with regard to offsets until further field-based evidence of their effectiveness is available.


Asunto(s)
Biodiversidad , Ecosistema , Hominidae , África , Animales , Conservación de los Recursos Naturales , Geografía
20.
Evol Anthropol ; 23(1): 8-10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24591133

RESUMEN

Primatology as a discrete branch of science involving the study of primate behavior and ecology took off in the 1960s after discovery of the importance of primates as models for biomedical research and the realization that primates provide insights into the evolutionary history of humans. Osman Hill's unfortunately incomplete monograph series on the comparative anatomy and taxonomy of the primates(1) and the Napiers' 1967 A Handbook of Living Primates(2) recorded the world's view of primate diversity at this time. This taxonomy remained the baseline for nearly three decades, with the diversity of each genus being represented by some species, but extensively as subspecies.


Asunto(s)
Antropología Física , Primates/clasificación , Animales , Evolución Biológica , Zoología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...