Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 15(2): e2000689, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28207737

RESUMEN

Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS), a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health.


Asunto(s)
Sistema Nervioso Entérico/fisiología , Microbioma Gastrointestinal , Intestinos/microbiología , Animales , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Recuento de Células , Recuento de Colonia Microbiana , Disbiosis/genética , Disbiosis/microbiología , Disbiosis/patología , Sistema Nervioso Entérico/citología , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/patología , Intestinos/patología , Recuento de Leucocitos , Modelos Biológicos , Mutación/genética , Neutrófilos/metabolismo , Filogenia , Factores de Transcripción SOXE/metabolismo , Trasplante de Células Madre , Pez Cebra , Proteínas de Pez Cebra/metabolismo
2.
Dis Model Mech ; 9(2): 187-98, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26681746

RESUMEN

Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD). The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish. The gnotobiotic stickleback model that we have developed therefore provides a platform for future studies mapping the natural genetic basis of the variation in immune response to microbes.


Asunto(s)
Peces/microbiología , Inmunidad Innata , Intestinos/microbiología , Microbiota , Animales , Agua Dulce , Agua de Mar
3.
ISME J ; 5(10): 1595-608, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21472014

RESUMEN

Experimental analysis of gut microbial communities and their interactions with vertebrate hosts is conducted predominantly in domesticated animals that have been maintained in laboratory facilities for many generations. These animal models are useful for studying coevolved relationships between host and microbiota only if the microbial communities that occur in animals in lab facilities are representative of those that occur in nature. We performed 16S rRNA gene sequence-based comparisons of gut bacterial communities in zebrafish collected recently from their natural habitat and those reared for generations in lab facilities in different geographic locations. Patterns of gut microbiota structure in domesticated zebrafish varied across different lab facilities in correlation with historical connections between those facilities. However, gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota. The zebrafish intestinal habitat therefore selects for specific bacterial taxa despite radical differences in host provenance and domestication status.


Asunto(s)
Bacterias/clasificación , Tracto Gastrointestinal/microbiología , Metagenoma , Pez Cebra/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Intestinos/microbiología , Datos de Secuencia Molecular , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA