Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Diabetes Investig ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421109

RESUMEN

AIMS/INTRODUCTION: This study aimed to investigate the diagnostic potential of two simplified tests, a point-of-care nerve conduction device (DPNCheck™) and a coefficient of variation of R-R intervals (CVR-R ), as an alternative to traditional nerve conduction studies for the diagnosis of diabetic polyneuropathy (DPN) in patients with diabetes. MATERIALS AND METHODS: Inpatients with type 1 or type 2 diabetes (n = 167) were enrolled. The study population consisted of 101 men, with a mean age of 60.8 ± 14.8 years. DPN severity was assessed using traditional nerve conduction studies, and differentiated based on Baba's classification (BC). To examine the explanatory potential of variables in DPNCheck™ and CVR-R regarding the severity of DPN according to BC, a multiple regression analysis was carried out, followed by a receiver operating characteristic analysis. RESULTS: Based on BC, 61 participants (36.5% of the total) were categorized as having DPN severity of stage 2 or more. The multiple regression analysis yielded a predictive formula with high predictive power for DPN diagnosis (estimated severity of DPN in BC = 2.258 - 0.026 × nerve conduction velocity [m/s] - 0.594 × ln[sensory nerve action potential amplitude (µV)] + 0.528In[age(years)] - 0.178 × ln[CVR-R ], r = 0.657). The area under the curve in receiver operating characteristic analysis was 0.880. Using the optimal cutoff value for DPN with severer than stage 2, the predictive formula showed good diagnostic efficacy: sensitivity of 83.6%, specificity of 79.2%, positive predictive value of 51.7% and negative predictive value of 76.1%. CONCLUSIONS: These findings suggest that DPN diagnosis using DPNCheck™ and CVR-R could improve diagnostic efficiency and accessibility for DPN assessment in patients with diabetes.

2.
Diabetol Int ; 14(1): 76-85, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636163

RESUMEN

Aims: Muscle atrophy is a diabetic complication, which results in a deterioration in glycemic control in type 2 diabetes mellitus (T2DM) individuals. The psoas muscle mass index (PMI) is a reliable indicator for estimating whole-body muscle mass. We aimed to examine the relationship between clinical parameters and the PMI to clarify the mechanism underlying muscle atrophy in diabetes. Methods: This retrospective, cross-sectional study examined 51 patients (31 men and 20 women) with T2DM and a mean HbA1c value of 9.9 ± 1.7%. These patients were admitted to Aichi Medical University Hospital and underwent abdominal computed tomography imaging from July 2020 to April 2021. Multiple clinical parameters were assessed with the PMI. Results: In a multiple regression analysis adjusted for age and sex, the PMI was correlated with body weight, body mass index, serum concentrations of corrected calcium, aspartate aminotransferase, alanine aminotransferase, creatine kinase, thyroid-stimulating hormone (TSH), urinary C-peptide concentrations, the free triiodothyronine/free thyroxine (FT3/FT4) ratio, and the young adult mean score at the femur neck. Receiver operating characteristic curves were created using TSH concentrations and the FT3/FT4 ratio for diagnosing a low PMI. The area under the curve was 0.593 and 0.699, respectively. The cut-off value with maximum accuracy for TSH concentrations was 1.491 µIU/mL, sensitivity was 56.1%, and specificity was 80.0%. Corresponding values for the FT3/FT4 ratio were 1.723, 78.0, and 66.7%, respectively. Conclusion: TSH concentrations and the FT3/FT4 ratio are correlated with the PMI, and their thresholds may help prevent muscle mass loss in Japanese individuals with T2DM.

3.
STAR Protoc ; 3(3): 101591, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35942346

RESUMEN

Morphological analysis of peripheral nerves in mouse models can be used to characterize the pathophysiology of peripheral nerve disease, but obtaining high-quality electron micrographs can be challenging. Here, we present a protocol to obtain electron micrographs of mouse peripheral nerves. We detail the procedures of sampling, fixation, and embedding of peripheral nerves. We then outline the steps for ultrathin sectioning and transmission electron microscopy imaging. Finally, we describe morphological evaluation of nerve fibers in these images using ImageJ and AxonSeg. For complete details on the use and execution of this protocol, please refer to Nakai-Shimoda et al. (2021).


Asunto(s)
Técnicas Histológicas , Nervios Periféricos , Animales , Técnicas Histológicas/métodos , Ratones , Microscopía Electrónica de Transmisión , Nervios Periféricos/diagnóstico por imagen , Manejo de Especímenes
4.
Science ; 377(6603): 292-297, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857592

RESUMEN

Hematopoietic mosaic loss of Y chromosome (mLOY) is associated with increased risk of mortality and age-related diseases in men, but the causal and mechanistic relationships have yet to be established. Here, we show that male mice reconstituted with bone marrow cells lacking the Y chromosome display increased mortality and age-related profibrotic pathologies including reduced cardiac function. Cardiac macrophages lacking the Y chromosome exhibited polarization toward a more fibrotic phenotype, and treatment with a transforming growth factor ß1-neutralizing antibody ameliorated cardiac dysfunction in mLOY mice. A prospective study revealed that mLOY in blood is associated with an increased risk for cardiovascular disease and heart failure-associated mortality. Together, these results indicate that hematopoietic mLOY causally contributes to fibrosis, cardiac dysfunction, and mortality in men.


Asunto(s)
Envejecimiento , Deleción Cromosómica , Insuficiencia Cardíaca , Células Madre Hematopoyéticas , Miocardio , Cromosoma Y , Envejecimiento/genética , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Fibrosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Macrófagos , Masculino , Ratones , Mosaicismo , Miocardio/patología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Cromosoma Y/genética
5.
Sci Rep ; 12(1): 9724, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697861

RESUMEN

Diabetic peripheral neuropathy (DPN) includes symptoms of thermosensory impairment, which are reported to involve changes in the expression or function, or both, of nociceptive TRPV1 and TRPA1 channels in rodents. In the present study, we did not find changes in the expression or function of TRPV1 or TRPA1 in DPN mice caused by STZ, although thermal hypoalgesia was observed in a murine model of DPN or TRPV1-/- mice with a Plantar test, which specifically detects temperature avoidance. With a Thermal Gradient Ring in which mice can move freely in a temperature gradient, temperature preference can be analyzed, and we clearly discriminated the temperature-dependent phenotype between DPN and TRPV1-/- mice. Accordingly, we propose approaches with multiple behavioral methods to analyze the progression of DPN by response to thermal stimuli. Attention to both thermal avoidance and preference may provide insight into the symptoms of DPN.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Animales , Ratones , Neuropatías Diabéticas/etiología
6.
iScience ; 25(1): 103609, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35005553

RESUMEN

Glucose-responsive ATP-sensitive potassium channels (KATP) are expressed in a variety of tissues including nervous systems. The depolarization of the membrane potential induced by glucose may lead to hyperexcitability of neurons and induce excitotoxicity. However, the roles of KATP in the peripheral nervous system (PNS) are poorly understood. Here, we determine the roles of KATP in the PNS using KATP-deficient (Kir6.2-deficient) mice. We demonstrate that neurite outgrowth of dorsal root ganglion (DRG) neurons was reduced by channel closers sulfonylureas. However, a channel opener diazoxide elongated the neurite. KATP subunits were expressed in mouse DRG, and expression of certain subunits including Kir6.2 was increased in diabetic mice. In Kir6.2-deficient mice, the current perception threshold, thermal perception threshold, and sensory nerve conduction velocity were impaired. Electron microscopy revealed a reduction of unmyelinated and small myelinated fibers in the sural nerves. In conclusion, KATP may contribute to the development of peripheral neuropathy.

7.
Cardiovasc Res ; 118(6): 1413-1432, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34164655

RESUMEN

Clonal haematopoiesis (CH) is a phenomenon whereby somatic mutations confer a fitness advantage to haematopoietic stem and progenitor cells (HSPCs) and thus facilitate their aberrant clonal expansion. These mutations are carried into progeny leucocytes leading to a situation whereby a substantial fraction of an individual's blood cells originate from the HSPC mutant clone. Although this condition rarely progresses to a haematological malignancy, circulating blood cells bearing the mutation have the potential to affect other organ systems as they infiltrate into tissues under both homeostatic and disease conditions. Epidemiological and clinical studies have revealed that CH is highly prevalent in the elderly and is associated with an increased risk of cardiovascular disease and mortality. Recent experimental studies in murine models have assessed the most commonly mutated 'driver' genes associated with CH, and have provided evidence for mechanistic connections between CH and cardiovascular disease. A deeper understanding of the mechanisms by which specific CH mutations promote disease pathogenesis is of importance, as it could pave the way for individualized therapeutic strategies targeting the pathogenic CH gene mutations in the future. Here, we review the epidemiology of CH and the mechanistic work from studies using murine disease models, with a particular focus on the strengths and limitations of these experimental systems. We intend for this review to help investigators select the most appropriate models to study CH in the setting of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Hematopoyesis Clonal , Anciano , Animales , Enfermedades Cardiovasculares/epidemiología , Hematopoyesis Clonal/genética , Modelos Animales de Enfermedad , Hematopoyesis/genética , Células Madre Hematopoyéticas , Humanos , Ratones , Mutación
9.
Cells ; 9(11)2020 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142678

RESUMEN

Diabetes is a major risk factor for atherosclerosis and ischemic vascular diseases. Recently, regenerative medicine is expected to be a novel therapy for ischemic diseases. Our previous studies have reported that transplantation of stem cells promoted therapeutic angiogenesis for diabetic neuropathy and ischemic vascular disease in a paracrine manner, but the precise mechanism is unclear. Therefore, we examined whether secreted factors from stem cells had direct beneficial effects on endothelial cells to promote angiogenesis. The soluble factors were collected as conditioned medium (CM) 48 h after culturing stem cells from human exfoliated deciduous teeth (SHED) in serum-free DMEM. SHED-CM significantly increased cell viability of human umbilical vein endothelial cells (HUVECs) in MTT assays and accelerated HUVECs migration in wound healing and Boyden chamber assays. In a Matrigel plug assay of mice, the migrated number of primary endothelial cells was markedly increased in the plug containing SHED-CM or SHED suspension. SHED-CM induced complex tubular structures of HUVECs in a tube formation assay. Furthermore, SHED-CM significantly increased neovascularization from the primary rat aorta, indicating that SHED-CM stimulated primary endothelial cells to promote comprehensive angiogenesis processes. The angiogenic effects of SHED-CM were the same or greater than the effective concentration of VEGF. In conclusion, SHED-CM directly stimulates vascular endothelial cells to promote angiogenesis and is promising for future clinical application.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Medios de Cultivo Condicionados/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre/metabolismo , Diente Primario/citología , Animales , Movimiento Celular/efectos de los fármacos , Separación Celular/métodos , Células Cultivadas , Niño , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Exfoliación Dental
10.
Biochem Biophys Res Commun ; 532(1): 47-53, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32826056

RESUMEN

Although diabetic polyneuropathy (DPN) is the commonest diabetic complication, its pathology remains to be clarified. As previous papers have suggested the neuroprotective effects of glucagon-like peptide-1 in DPN, the current study investigated the physiological indispensability of glucagon gene-derived peptides (GCGDPs) including glucagon-like peptide-1 in the peripheral nervous system (PNS). Neurological functions and neuropathological changes of GCGDP deficient (gcg-/-) mice were examined. The gcg-/- mice showed tactile allodynia and thermal hyperalgesia at 12-18 weeks old, followed by tactile and thermal hypoalgesia at 36 weeks old. Nerve conduction studies revealed a decrease in sensory nerve conduction velocity at 36 weeks old. Pathological findings showed a decrease in intraepidermal nerve fiber densities. Electron microscopy revealed a decrease in circularity and an increase in g-ratio of myelinated fibers and a decrease of unmyelinated fibers in the sural nerves of the gcg-/- mice. Effects of glucagon on neurite outgrowth were examined using an ex vivo culture of dorsal root ganglia. A supraphysiological concentration of glucagon promoted neurite outgrowth. In conclusion, the mice with deficiency of GCGDPs developed peripheral neuropathy with age. Furthermore, glucagon might have neuroprotective effects on the PNS of mice. GCGDPs might be involved in the pathology of DPN.


Asunto(s)
Neuropatías Diabéticas/etiología , Péptidos Similares al Glucagón/deficiencia , Animales , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/patología , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Glucagón/deficiencia , Glucagón/genética , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/deficiencia , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/metabolismo , Péptidos Similares al Glucagón/genética , Péptidos Similares al Glucagón/metabolismo , Hiperalgesia/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Nerviosas Mielínicas/patología , Conducción Nerviosa , Proyección Neuronal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo
11.
JCI Insight ; 5(6)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32154790

RESUMEN

Clonal hematopoiesis of indeterminate potential is prevalent in elderly individuals and associated with increased risks of all-cause mortality and cardiovascular disease. However, mouse models to study the dynamics of clonal hematopoiesis and its consequences on the cardiovascular system under homeostatic conditions are lacking. We developed a model of clonal hematopoiesis using adoptive transfer of unfractionated ten-eleven translocation 2-mutant (Tet2-mutant) bone marrow cells into nonirradiated mice. Consistent with age-related clonal hematopoiesis observed in humans, these mice displayed a progressive expansion of Tet2-deficient cells in multiple hematopoietic stem and progenitor cell fractions and blood cell lineages. The expansion of the Tet2-mutant fraction was also observed in bone marrow-derived CCR2+ myeloid cell populations within the heart, but there was a negligible impact on the yolk sac-derived CCR2- cardiac-resident macrophage population. Transcriptome profiling revealed an enhanced inflammatory signature in the donor-derived macrophages isolated from the heart. Mice receiving Tet2-deficient bone marrow cells spontaneously developed age-related cardiac dysfunction characterized by greater hypertrophy and fibrosis. Altogether, we show that Tet2-mediated hematopoiesis contributes to cardiac dysfunction in a nonconditioned setting that faithfully models human clonal hematopoiesis in unperturbed bone marrow. Our data support clinical findings that clonal hematopoiesis per se may contribute to diminished health span.


Asunto(s)
Hematopoyesis Clonal/fisiología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Cardiopatías , Proteínas Proto-Oncogénicas/metabolismo , Traslado Adoptivo , Envejecimiento/patología , Animales , Dioxigenasas , Células Madre Hematopoyéticas , Macrófagos , Ratones
12.
J Diabetes Investig ; 11(1): 28-38, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31144464

RESUMEN

AIMS/INTRODUCTION: Transplantation of stem cells promotes axonal regeneration and angiogenesis in a paracrine manner. In the present study, we examined whether the secreted factors in conditioned medium of stem cells from human exfoliated deciduous teeth (SHED-CM) had beneficial effects on diabetic polyneuropathy in mice. MATERIALS AND METHODS: Conditioned medium of stem cells from human exfoliated deciduous teeth was collected 48 h after culturing in serum-free Dulbecco's modified Eagle's medium (DMEM), and separated into four fractions according to molecular weight. Dorsal root ganglion neurons from C57BL/6J mice were cultured with SHED-CM or DMEM to evaluate the effect on neurite outgrowth. Streptozotocin-induced diabetic mice were injected with 100 µL of SHED-CM or DMEM into the unilateral hindlimb muscles twice a week over a period of 4 weeks. Peripheral nerve functions were evaluated by the plantar test, and motor and sensory nerve conduction velocities. Intraepidermal nerve fiber densities, capillary number-to-muscle fiber ratio, capillary blood flow and morphometry of sural nerves were also evaluated. RESULTS: Conditioned medium of stem cells from human exfoliated deciduous teeth significantly promoted neurite outgrowth of dorsal root ganglion neurons compared with DMEM. Among four fractions of SHED-CM, the only fraction of <6 kDa promoted the neurite outgrowth of dorsal root ganglion neurons. In addition, SHED-CM significantly prevented decline in sensory nerve conduction velocities compared with DMEM in diabetic mice. Although SHED-CM did not improve intraepidermal nerve fiber densities or morphometry of sural nerves, SHED-CM ameliorated the capillary number-to-muscle fiber ratio and capillary blood flow. CONCLUSIONS: These results suggested that SHED-CM might have a therapeutic effect on diabetic polyneuropathy through promoting neurite outgrowth, and the increase in capillaries might contribute to the improvement of neural function.


Asunto(s)
Pulpa Dental/citología , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/terapia , Ganglios Espinales/citología , Neuronas/citología , Trasplante de Células Madre/métodos , Células Madre/citología , Animales , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proyección Neuronal
13.
J Diabetes Res ; 2019: 2756020, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31828158

RESUMEN

Distal sensory-motor polyneuropathy is one of the most frequent diabetic complications. However, few therapies address the etiology of neurodegeneration in the peripheral nervous systems of diabetic patients. Several metabolic mechanisms have been proposed as etiologies of this polyneuropathy. In this study, we revisited one of those mechanisms, the polyol pathway, and investigated the curative effects of a novel strong aldose reductase inhibitor, ranirestat, in streptozotocin-induced diabetic rats with preexisting polyneuropathy. Twelve weeks after the onset of diabetes, rats which had an established polyneuropathy were treated once daily with a placebo, ranirestat, or epalrestat, over 6 weeks. Before and after the treatment, nerve conduction velocities and thermal perception threshold of hindlimbs were examined. After the treatment, intraepidermal fiber density was evaluated. As an ex vivo assay, murine dorsal root ganglion cells were dispersed and cultured with or without 1 µmol/l ranirestat for 48 hours. After the culture, neurite outgrowth was quantified using immunological staining. Sensory nerve conduction velocity increased in diabetic rats treated with ranirestat (43.3 ± 3.6 m/s) compared with rats treated with placebo (39.8 ± 2.3). Motor nerve conduction velocity also increased in the ranirestat group (45.6 ± 3.9) compared with the placebo group (38.9 ± 3.5). The foot withdrawal latency to noxious heating was improved in the ranirestat group (17.7 ± 0.6 seconds) compared with the placebo group (20.6 ± 0.6). The decrease in the intraepidermal fiber density was significant in the diabetic placebo group (21.6 ± 1.7/mm) but not significant in the diabetic ranirestat group (26.2 ± 1.2) compared with the nondiabetic placebo group (30.3 ± 1.5). Neurite outgrowth was promoted in the neurons supplemented with ranirestat (control 1446 ± 147 µm/neuron, ranirestat 2175 ± 149). Ranirestat improved the peripheral nervous dysfunctions in rats with advanced diabetic polyneuropathy. Ranirestat could have potential for regeneration in the peripheral nervous system of diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/fisiopatología , Inhibidores Enzimáticos/farmacología , Fibras Nerviosas/efectos de los fármacos , Conducción Nerviosa/efectos de los fármacos , Pirazinas/farmacología , Compuestos de Espiro/farmacología , Sensación Térmica/efectos de los fármacos , Aldehído Reductasa/antagonistas & inhibidores , Animales , Neuropatías Diabéticas/etiología , Epidermis/patología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Técnicas In Vitro , Ratones , Fibras Nerviosas/patología , Conducción Nerviosa/fisiología , Proyección Neuronal/efectos de los fármacos , Proyección Neuronal/fisiología , Ratas , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Sensación Térmica/fisiología
14.
J Diabetes Res ; 2019: 9426014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918901

RESUMEN

OBJECTIVE: Diabetic polyneuropathy (DPN) is one of the most prevalent diabetic complications. We previously demonstrated that exendin-4 (Ex4), a glucagon-like peptide-1 receptor agonist (GLP-1RA), has beneficial effects in animal models of DPN. We hypothesized that GLP-1 signaling would protect neurons of the peripheral nervous system from oxidative insult in DPN. Here, the therapeutic potential of GLP-1RAs on DPN was investigated in depth using the cellular oxidative insult model applied to the dorsal root ganglion (DRG) neuronal cell line. RESEARCH DESIGN AND METHODS: Immortalized DRG neuronal 50B11 cells were cultured with and without hydrogen peroxide in the presence or absence of Ex4 or GLP-1(7-37). Cytotoxicity and viability were determined using a lactate dehydrogenase assay and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt), respectively. Antioxidant enzyme activity was evaluated using a superoxide dismutase assay. Alteration of neuronal characteristics of 50B11 cells induced by GLP-1RAs was evaluated with immunocytochemistry utilizing antibodies for transient receptor potential vanilloid subfamily member 1, substance P, and calcitonin gene-related peptide. Cell proliferation and apoptosis were also examined by ethynyl deoxyuridine incorporation assay and APOPercentage dye, respectively. The neurite projection ratio induced by treatment with GLP-1RAs was counted. Intracellular activation of adenylate cyclase/cyclic adenosine monophosphate (cAMP) signaling was also quantified after treatment with GLP-1RAs. RESULTS: Neither Ex4 nor GLP-1(7-37) demonstrated cytotoxicity in the cells. An MTS assay revealed that GLP-1RAs amended impaired cell viability induced by oxidative insult in 50B11 cells. GLP-1RAs activated superoxide dismutase. GLP-1RAs induced no alteration of the distribution pattern in neuronal markers. Ex4 rescued the cells from oxidative insult-induced apoptosis. GLP-1RAs suppressed proliferation and promoted neurite projections. No GLP-1RAs induced an accumulation of cAMP. CONCLUSIONS: Our findings indicate that GLP-1RAs have neuroprotective potential which is achieved by their direct actions on DRG neurons. Beneficial effects of GLP-1RAs on DPN could be related to these direct actions on DRG neurons.


Asunto(s)
Apoptosis , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Calcitonina/metabolismo , Línea Celular , Proliferación Celular , Supervivencia Celular , AMP Cíclico/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Ratas , Sustancia P/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...