Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurosci Methods ; 399: 109971, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722626

RESUMEN

BACKGROUND: Cerebrospinal fluid (CSF) collection and its analysis are common medical practices useful in the diagnosis, therapy, and prevention of central nervous system (CNS) disorders. In recent years, several types of research have improved our insight into CSF and its role in health and disease. Yet, many characteristics of this fluid remain to be fully understood. NEW METHODS: Here, we describe how to collect CSF from embryonic, postnatal, and adult stages of the rat. In adults, CSF can be collected through simple stereotaxic surgery to expose the membrane overlying the cisterna magna (CM) of an anesthetized rat and collection of CSF through micropipette puncture through the membrane. In embryos and pups, CSF is aspirated, using a fire-polished micro-capillary pipette, from the CM of animals. RESULTS: Application of these methods provides the maximum volume of pure, uncontaminated CSF (embryonic day 19: 10-15 microliter, postnatal day 5: 20-30 microliter, adults: 100-200 microliter) with a success rate of approximately 95% in every age. COMPARISON WITH EXISTING METHODS: Compared to the existing protocols, these methods obtain considerable volumes of CSF, which may accelerate the measurement of biological markers in this fluid. Also, these techniques do not require surgical skills and according to the practical points mentioned during sampling, the procedures can be performed in rapid fashion. CONCLUSION: We describe simple methods for collecting CSF in live rats. These protocols provide clean, uncontaminated CSF for experiments to understand the exact role of this fluid in the development and maintenance of the CNS health.


Asunto(s)
Cisterna Magna , Punción Espinal , Ratas , Animales , Punción Espinal/métodos , Cisterna Magna/cirugía , Manejo de Especímenes/métodos , Biomarcadores , Líquido Cefalorraquídeo/fisiología
2.
Cell Prolif ; 56(7): e13397, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36631409

RESUMEN

The beneficial effects of hair follicle stem cells in different animal models of nervous system conditions have been extensively studied. While chick embryo extract (CEE) has been used as a growth medium supplement for these stem cells, this is the first study to show the effect of CEE on them. The rat hair follicle stem cells were isolated and supplemented with 10% fetal bovine serum plus 10% CEE. The migration rate, proliferative capacity and multipotency were evaluated along with morphometric alteration and differentiation direction. The proteome analysis of CEE content identified effective factors of CEE that probably regulate fate and function of stem cells. The CEE enhances the migration rate of stem cells from explanted bulges as well as their proliferation, likely due to activation of AP-1 and translationally controlled tumour protein (TCTP) by thioredoxin found in CEE. The increased length of outgrowth may be the result of cyclic AMP response element binding protein (CREB) phosphorylation triggered by active CamKII contained in CEE. Further, CEE supplementation upregulates the expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The elevated expression of target genes and proteins may be due to CREB, AP-1 and c-Myc activation in these stem cells. Given the increased transcript levels of neurotrophins, VEGF, and the expression of PDGFR-α, S100B, MBP and SOX-10 protein, it is possible that CEE promotes the fate of these stem cells towards Schwann cells.


Asunto(s)
Folículo Piloso , Factor A de Crecimiento Endotelial Vascular , Ratas , Embrión de Pollo , Animales , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor de Transcripción AP-1/farmacología , Diferenciación Celular , Células de Schwann/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Madre/metabolismo , Células Cultivadas
4.
Rev Neurosci ; 33(6): 583-606, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35130375

RESUMEN

Intranasal delivery of stem cells and conditioned medium to target the brain has attracted major interest in the field of regenerative medicine. In pre-clinical investigations during the last ten years, several research groups focused on this strategy to treat cerebral hypoxia/ischemia in neonates as well as adults. In this review, we discuss the curative potential of stem cells, stem cell derivatives, and their delivery route via intranasal application to the hypoxic/ischemic brain. After intranasal application, stem cells migrate from the nasal cavity to the injured area and exert therapeutic effects by reducing brain tissue loss, enhancing endogenous neurogenesis, and modulating cerebral inflammation that leads to functional improvements. However, application of this administration route for delivering stem cells and/or therapeutic substances to the damaged sites requires further optimization to translate the findings of animal experiments to clinical trials.


Asunto(s)
Hipoxia-Isquemia Encefálica , Administración Intranasal , Animales , Encéfalo , Humanos , Hipoxia-Isquemia Encefálica/terapia , Neurogénesis , Células Madre
5.
Annu Rev Pharmacol Toxicol ; 62: 25-53, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33606962

RESUMEN

In December 2019, a novel coronavirus crossed species barriers to infect humans and was effectively transmitted from person to person, leading to a worldwide pandemic. Development of effective clinical interventions, including vaccines and antiviral drugs that could prevent or limit theburden or transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health priority. It is thus of utmost importance to assess possible therapeutic strategies against SARS-CoV-2 using experimental models that recapitulate aspects of the human disease. Here, we review available models currently being developed and used to study SARS-CoV-2 infection and highlight their application to screen potential therapeutic approaches, including repurposed antiviral drugs and vaccines. Each identified model provides a valuable insight into SARS-CoV-2 cellular tropism, replication kinetics, and cell damage that could ultimately enhance understanding of SARS-CoV-2 pathogenesis and protective immunity.


Asunto(s)
COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Modelos Teóricos , Pandemias , SARS-CoV-2
6.
Stem Cell Rev Rep ; 18(2): 412-440, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34033001

RESUMEN

The last two decades have witnessed a surge in investigations proposing stem cells as a promising strategy to treat stroke. Since growth factor release is considered as one of the most important aspects of cell-based therapy, stem cells over-expressing growth factors are hypothesized to yield higher levels of therapeutic efficiency. In pre-clinical studies of the last 15 years that were investigating the efficiency of stem cell therapy for stroke, a variety of stem cell types were genetically modified to over-express various factors. In this review we summarize the current knowledge on the therapeutic efficiency of stem cell-derived growth factors, encompassing techniques employed and time points to evaluate. In addition, we discuss several types of stem cells, including the recently developed model of epidermal neural crest stem cells, and genetically modified stem cells over-expressing specific factors, which could elevate the restorative potential of naive stem cells. The restorative potential is based on enhanced survival/differentiation potential of transplanted cells, apoptosis inhibition, infarct volume reduction, neovascularization or functional improvement. Since the majority of studies have focused on the short-term curative effects of genetically engineered stem cells, we emphasize the need to address their long-term impact.


Asunto(s)
Trasplante de Células Madre , Accidente Cerebrovascular , Diferenciación Celular/fisiología , Humanos , Cresta Neural/metabolismo , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia
7.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614107

RESUMEN

We investigated the cerebral folate system in post-mortem brains and matched cerebrospinal fluid (CSF) samples from subjects with definite Alzheimer's disease (AD) (n = 21) and neuropathologically normal brains (n = 21) using immunohistochemistry, Western blot and dot blot. In AD the CSF showed a significant decrease in 10-formyl tetrahydrofolate dehydrogenase (FDH), a critical folate binding protein and enzyme in the CSF, as well as in the main folate transporter, folate receptor alpha (FRα) and folate. In tissue, we found a switch in the pathway of folate supply to the cerebral cortex in AD compared to neurologically normal brains. FRα switched from entry through FDH-positive astrocytes in normal, to entry through glial fibrillary acidic protein (GFAP)-positive astrocytes in the AD cortex. Moreover, this switch correlated with an apparent change in metabolic direction to hypermethylation of neurons in AD. Our data suggest that the reduction in FDH in CSF prohibits FRα-folate entry via FDH-positive astrocytes and promotes entry through the GFAP pathway directly to neurons for hypermethylation. This data may explain some of the cognitive decline not attributable to the loss of neurons alone and presents a target for potential treatment.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Estudios de Cohortes , Encéfalo/metabolismo , Astrocitos/metabolismo , Ácido Fólico/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo
8.
J Cereb Blood Flow Metab ; 41(12): 3400-3414, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34415213

RESUMEN

The aetiology of congenital hydrocephalus (cHC) has yet to be resolved. cHC manifests late in rodent gestation, and by 18-22 weeks in human fetuses, coinciding with the start of the major phase of cerebral cortex development. Previously we found that cerebrospinal fluid (CSF) accumulation is associated with compositional changes, folate metabolic impairment and consequential arrest in cortical development. Here, we report a proteomics study on hydrocephalic and normal rat CSF using LC-MSMS and a metabolic pathway analysis to determine the major changes in metabolic and signalling pathways. Non-targeted analysis revealed a proteome transformation across embryonic days 17-20, with the largest changes between day 19 and 20. This provides evidence for a physiological shift in CSF composition and identifies some of the molecular mechanisms unleashed during the onset of cHC. Top molecular regulators that may control the shift in the CSF metabolic signature are also predicted, with potential key biomarkers proposed for early detection of these changes that might be used to develop targeted early therapies for this condition. This study confirms previous findings of a folate metabolic imbalance as well as providing more in depth metabolic analysis and understanding of cHC CSF.


Asunto(s)
Hidrocefalia/líquido cefalorraquídeo , Metaboloma , Proteoma/metabolismo , Animales , Biomarcadores/líquido cefalorraquídeo , Líquido Cefalorraquídeo/metabolismo , Humanos , Ratas , Ratas Sprague-Dawley
9.
Brain Sci ; 11(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067592

RESUMEN

In the recent review published in Brain Sciences, Othman and Tan suggested several preconditioning strategies to improve stem cell therapy after ischemic brain injury [...].

10.
J Cereb Blood Flow Metab ; 39(10): 2061-2073, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29798726

RESUMEN

Hydrocephalus (HC) is an imbalance in cerebrospinal fluid (CSF) secretion/absorption resulting in fluid accumulation within the brain with consequential pathophysiology. Our research has identified a unique cerebral folate system in which depletion of CSF 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is associated with cortical progenitor cell-cycle arrest in hydrocephalic Texas (H-Tx) rats. We used tissue culture, immunohistochemistry, in-situ PCR and RT-PCR and found that the in-vitro proliferation of arachnoid cells is highly folate-dependent with exacerbated proliferation occurring in hydrocephalic CSF that has low FDH but high folate-receptor-alpha (FRα) and folate. Adding FDH to this CSF prevented aberrant proliferation indicating a regulatory function of FDH on CSF folate concentration. Arachnoid cells have no detectable mRNA for FRα or FDH, but FDH mRNA is found in the choroid plexus (CP) and CSF microvesicles. Co-localization of FDH, FRα and folate suggests important functions of FDH in cerebral folate transport, buffering and function. In conclusion, abnormal CSF levels of FDH, FRα and folate inhibit cortical cell proliferation but allow uncontrolled arachnoid cell division that should increase fluid absorption by increasing the arachnoid although this fails in the hydrocephalic brain. FDH appears to buffer available folate to control arachnoid proliferation and function.


Asunto(s)
Ácido Fólico/metabolismo , Hidrocefalia/patología , Animales , Aracnoides/citología , Aracnoides/metabolismo , Aracnoides/patología , Proliferación Celular , Células Cultivadas , Femenino , Receptor 1 de Folato/líquido cefalorraquídeo , Receptor 1 de Folato/metabolismo , Ácido Fólico/líquido cefalorraquídeo , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/metabolismo , Masculino , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/líquido cefalorraquídeo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Cell J ; 19(4): 537-544, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29105387

RESUMEN

OBJECTIVES: Cerebrospinal fluid (CSF) plays an important role in cortical development during the fetal stages. Embryonic CSF (E-CSF) consists of numerous neurotrophic and growth factors that regulate neurogenesis, differentiation, and proliferation. Mesenchymal stem cells (MSCs) are multi-potential stem cells that can differentiate into mesenchymal and non-mesenchymal cells, including neural cells. This study evaluates the prenatal and postnatal effects of CSF on proliferation and neural differentiation of bone marrow MSCs (BM-MSCs) at gestational ages E19, E20, and the first day after birth (P1). MATERIALS AND METHODS: In this experimental study, we confirmed the mesenchymal nature of BM-MSCs according to their adherence properties and surface markers (CD44, CD73 and CD45). The multi-potential characteristics of BMMSCs were verified by assessments of the osteogenic and adipogenic potentials of these cells. Under appropriate in vitro conditions, the BM-MSCs cultures were incubated with and without additional pre- and postnatal CSF. The MTT assay was used to quantify cellular proliferation and viability. Immunocytochemistry was used to study the expression of MAP-2 and ß-III tubulin in the BM-MSCs. We used ImageJ software to measure the length of the neurites in the cultured cells. RESULTS: BM-MSCs differentiated into neuronal cell types when exposed to basic fibroblast growth factor (b-FGF). Viability and proliferation of the BM-MSCs conditioned with E19, E20, and P1 CSF increased compared to the control group. We observed significantly elevated neural differentiation of the BM-MSCS cultured in the CSF-supplemented medium from E19 compared to cultures conditioned with E20 and P1 CSF group. CONCLUSIONS: The results have confirmed that E19, E20, and P1 CSF could induce proliferation and differentiation of BM-MSCs though they are age dependent factors. The presented data support a significant, conductive role of CSF components in neuronal survival, proliferation, and differentiation.

12.
Braz. arch. biol. technol ; 60: e17160221, 2017. graf
Artículo en Inglés | LILACS | ID: biblio-951461

RESUMEN

ABSTRACT Embryonic cerebrospinal fluid (E-CSF) contains many neurotrophic and growth factors, acts as a growth medium for cortical progenitors, and can modulate proliferation and differentiation of neural stem cells. Mesenchymal stem cells (MSCs) are multipotential stem cells that can differentiate into several types of mesenchymal cells as well as nonmesenchymal cells, such as neural cells. In the present study, the effect of E-CSF on proliferation and neural differentiation of bone marrow mesenchymal stem cells (BM-MSCs) was investigated to test whether E-CSF is capable of driving these cells down the neuronal line. To verify the multipotential characteristics of BM-MSCs, the cells were analyzed for their osteogenic and adipogenic potential. Expression of the neural markers, MAP-2 and β-III tubulin, was determined by Immunocytochemistry. BM-MSCs differentiate into neuronal cell types when exposed to b-FGF. BMMSCs cells cultured in medium supplemented with CSF showed significantly elevated proliferation relative to control cells in media alone. E-CSF (E17-E19) supports viability and stimulates proliferation and, significantly, neurogenic differentiation of BM-MSCs. The data presented support an important role for CSF components, specifically neurotrophic factors, in stem cell survival, proliferation and neuronal differentiation. It is crucial to understand this control by CSF to ensure success in neural stem cell therapies.

13.
Immunology ; 147(3): 292-304, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26643862

RESUMEN

Neuro-immune interactions, particularly those driven by neuropeptides, are increasingly implicated in immune responses. For instance, triggering calcium-channel transient receptor potential vanilloid 1 (TRPV1) on sensory nerves induces the release of calcitonin-gene-related peptide (CGRP), a neuropeptide known to moderate dendritic cell activation and T helper cell type 1 polarization. Despite observations that CGRP is not confined to the nervous system, few studies have addressed the possibility that immune cells can respond to well-documented 'neural' ligands independently of peripheral nerves. Here we have identified functionally relevant TRPV1 on primary antigen-presenting cells of the spleen and have demonstrated both calcium influx and CGRP release in three separate strains of mice using natural agonists. Furthermore, we have shown down-regulation of activation markers CD80/86 on dendritic cells, and up-regulation of interleukin-6 and interleukin-10 in response to CGRP treatment. We suggest that dendritic cell responses to neural ligands can amplify neuropeptide release, but more importantly that variability in CGRP release across individuals may have important implications for immune cell homeostasis.


Asunto(s)
Células Dendríticas/inmunología , Homeostasis/inmunología , Neuroinmunomodulación/inmunología , Canales Catiónicos TRPV/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/citología , Bazo/inmunología
14.
Front Neurosci ; 8: 382, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25520609
15.
Childs Nerv Syst ; 30(7): 1155-64, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24733414

RESUMEN

PURPOSE: Hydrocephalus (HC) has a multifactorial and complex picture of pathophysiology due to aetiology, age at and duration since onset. We have previously identified distinctions in markers of cell death associated with different aetiologies. Here, we examined cerebrospinal fluid (CSF) from human HC neonates for cytokines to identify further distinguishing features of different aetiologies. METHODS: CSF was collected during routine lumbar puncture or ventricular tap from neonates with hydrocephalus, or with no neurological condition (normal controls). Total protein, Fas receptor, Fas ligand, stem cell factor (SCF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), insulin growth factor-1 (IGF-1), tumour necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were measured and compared between 8 unaffected and 28 HC neonatal CSF samples. RESULTS: Total protein was significantly (P < 0.05) raised in late-onset hydrocephalus (LOH). Fas receptor was raised (P < 0.05) in post-haemorrhagic hydrocephalus (PHH) and spina bifida with hydrocephalus (SB/HC), but no difference in Fas ligand was found. SCF was raised (P < 0.05) in SB/HC. HGF was found in all HC and was increased (P < 0.01) in PHH. Increased VEGF was found in PHH (P < 0.01) and SB/HC (P < 0.05). Variable levels of IL-6, TNF-α and IGF-1 were found in all HC groups compared with none in normal. CONCLUSIONS: LOH was unusual with significantly raised total protein indicating an inflammatory state. Increased Fas receptor, VEGF, IGF-1 and HGF suggest anti-apoptotic and repair mechanism activation. By contrast, elevated TNF-α and IL-6 indicate inflammatory processes in these neonatal brains. Taken with our previous study, these data indicate that different pathophysiology, inflammation and repair are occurring in HC of different aetiologies and that additional treatment strategies may benefit these infants in addition to fluid diversion.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/etiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino
16.
Front Neurosci ; 8: 23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24592205

RESUMEN

The question of how the neural and immune systems interact in host defense is important, integrating a system that senses the whole body with one that protects. Understanding the mechanisms and routes of control could produce novel and powerful ways of promoting and enhancing normal functions as well as preventing or treating abnormal functions. Fragmentation of biological research into specialities has resulted in some failures in recognizing and understanding interactions across different systems and this is most striking across immunology, hematology, and neuroscience. This reductionist approach does not allow understanding of the in vivo orchestrated response generated through integration of all systems. However, many factors make the understanding of multisystem cross-talk in response to a threat difficult, for instance the nervous and immune systems share communication molecules and receptors for a wide range of physiological signals. But, it is clear that physical, hard-wired connections exist between the two systems, with the key link involving sensory, unmyelinated nerve fibers (c fibers) containing the neuropeptide calcitonin gene-related peptide (CGRP), and modified macrophages, mast cells and other immune and host defense cells in various locations throughout the body. In this review we will therefore focus on the induction of CGRP and its key role in the neuroimmune axis.

17.
Artículo en Inglés | MEDLINE | ID: mdl-24639668

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous condition affecting an individual's ability to communicate and socialize and often presents with repetitive movements or behaviors. It tends to be severe with less than 10% achieving independent living with a marked variation in the progression of the condition. To date, the literature supports a multifactorial model with the largest, most detailed twin study demonstrating strong environmental contribution to the development of the condition. Here, we present a brief review of the neurological, immunological, and autonomic abnormalities in ASD focusing on the causative roles of environmental agents and abnormal gut microbiota. We present a working hypothesis attempting to bring together the influence of environment on the abnormal neurological, immunological, and neuroimmunological functions and we explain in brief how such pathophysiology can lead to, and/or exacerbate ASD symptomatology. At present, there is a lack of consistent findings relating to the neurobiology of autism. Whilst we postulate such variable findings may reflect the marked heterogeneity in clinical presentation and as such the variable findings may be of pathophysiological relevance, more research into the neurobiology of autism is necessary before establishing a working hypothesis. Both the literature review and hypothesis presented here explore possible neurobiological explanations with an emphasis of environmental etiologies and are presented with this bias.

18.
Fluids Barriers CNS ; 10(1): 34, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24351234

RESUMEN

BACKGROUND: In hydrocephalus an imbalance between production and absorption of cerebrospinal fluid (CSF) results in fluid accumulation, compression and stretching of the brain parenchyma. In addition, changes in CSF composition have a profound influence on the development and function of the brain and together, these can result in severe life-long neurological deficits. Brain damage or degenerative conditions can result in release of proteins expressed predominantly in neurons, astroglia, or oligodendroglia into the brain interstitial fluid, CSF and blood. Determination of such products in the CSF might be of value in diagnosing cause, aetiology and/or assessing the severity of the neurological damage in patients with hydrocephalus. We therefore analysed CSF from human neonates with hydrocephalus for these proteins to provide an insight into the pathophysiology associated with different aetiologies. METHODS: CSF was collected during routine lumbar puncture or ventricular tap. Samples were categorized according to age of onset of hydrocephalus and presumed cause (fetal-onset, late-onset, post-haemorrhagic or spina bifida with hydrocephalus). Glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), vimentin and 2' , 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) were analysed through Western blotting of hydrocephalic CSF samples (n = 17) and compared with data from CSF of normal infants without neurological deficits (n = 8). RESULTS: GFAP was significantly raised only in CSF from post-haemorrhagic hydrocephalus while MBP was significantly raised in post-haemorrhagic and in spina bifida with hydrocephalus infants. Vimentin protein was only detected in some CSF samples from infants with late-onset hydrocephalus but not from other conditions. Surprisingly, CNPase was found in all neonatal CSF samples, including normal and hydrocephalic groups, although it was reduced in infants with late onset hydrocephalus compared with normal and other hydrocephalic groups. CONCLUSIONS: Apart from CNPase, which is an enzyme, the markers investigated are intracellular intermediate filaments and would be present in CSF only if the cells are compromised and the proteins released. Raised GFAP observed in post-haemorrhagic hydrocephalus must reflect damage to astrocytes and ependyma. Raised MBP in post-haemorrhagic and spina bifida with hydrocephalus indicates damage to oligodendrocytes and myelin. Vimentin protein detected in some of the late-onset hydrocephalic samples indicates damage to glial and other progenitors and suggests this condition affects periventricular regions. The presence of CNPase in all CSF samples was unexpected and indicates a possible novel role for this enzyme in brain development/myelination. Less CNPase in some cases of late-onset hydrocephalus could therefore indicate changes in myelination in these infants. This study demonstrates differential glial damage and loss in the developing human neonatal hydrocephalic brain associated with different aetiologies.

19.
Am J Pathol ; 183(5): 1608-20, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24160325

RESUMEN

By using pseudorabies virus expressing green fluorescence protein, we found that efferent bone marrow-neural connections trace to sympathetic centers of the central nervous system in normal mice. However, this was markedly reduced in type 1 diabetes, suggesting a significant loss of bone marrow innervation. This loss of innervation was associated with a change in hematopoiesis toward generation of more monocytes and an altered diurnal release of monocytes in rodents and patients with type 1 diabetes. In the hypothalamus and granular insular cortex of mice with type 1 diabetes, bone marrow-derived microglia/macrophages were activated and found at a greater density than in controls. Infiltration of CD45(+)/CCR2(+)/GR-1(+)/Iba-1(+) bone marrow-derived monocytes into the hypothalamus could be mitigated by treatment with minocycline, an anti-inflammatory agent capable of crossing the blood-brain barrier. Our studies suggest that targeting central inflammation may facilitate management of microvascular complications.


Asunto(s)
Médula Ósea/inervación , Médula Ósea/patología , Sistema Nervioso Central/patología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/patología , Inflamación/patología , Animales , Médula Ósea/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Proteínas Fluorescentes Verdes/metabolismo , Hematopoyesis/efectos de los fármacos , Herpesvirus Suido 1/efectos de los fármacos , Herpesvirus Suido 1/fisiología , Humanos , Inflamación/complicaciones , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Minociclina/farmacología , Modelos Biológicos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neurotransmisores/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/patología
20.
J Med Food ; 16(6): 504-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23735000

RESUMEN

Aquaporin-1 (AQP1) is a water channel that is highly expressed on the apical side of the choroid plexus epithelium (CP) and thought to be one of the major pathways for the high water permeability of this structure. Blockade of AQP1 in the CP reduce the production of cerebrospinal fluid (CSF). Downregulation of AQP1 might be protective against some neurological disorders correlated with increased intracranial pressure and/or poor drainage of CSF. Curcumin, the major constituent of the rhizome of Curcuma longa, has been shown to inhibit potassium channels, Na⁺-K⁺ ATPase, as well as AQP3 in some cells. We therefore speculated that curcumin might be a useful tool to inhibit and/or decrease AQP1, and thus might be useful in the regulation of CSF production in pathophysiological conditions, including traumatic brain injury, hydrocephalus, stroke, systemic hyponatremia, acute cerebral edema, and hypertension. Choroidal epithelial cells of the lateral ventricle of Wistar rats were isolated and grown in in-vitro cultures for 24 h. Curcumin was then added to the medium at different concentrations, and the cell viability tested by the (3,4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Additional wells of cells were tested for AQP1 protein expression using immunocytochemistry, immunoblotting, and flow cytometry. Our results showed that curcumin treatment decreases AQP1 expression in rat choroid epithelium cells in a dose-dependent manner. We conclude that curcumin may be a useful tool to regulate CSF production in pathophysiological conditions such as hydrocephalus, systemic hyponatremia, hypertension, and other neurological conditions.


Asunto(s)
Acuaporina 1/genética , Plexo Coroideo/citología , Curcumina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Animales , Acuaporina 1/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Plexo Coroideo/efectos de los fármacos , Plexo Coroideo/metabolismo , Femenino , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...