Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 233(0): 244-256, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34874047

RESUMEN

In this work, we propose lateral voltage as a new input for use in artificial lipid bilayer systems in addition to the commonly used transmembrane voltage. To apply a lateral voltage to bilayer lipid membranes, we fabricated electrode-equipped silicon and Teflon chips. The Si chips could be used for photodetector devices based on fullerene-doped lipid bilayers, and the Teflon chips were used in a study of the ion channel functions in the lipid bilayer. The findings indicate that the lateral voltage effectively regulates the transmembrane current, in both ion-channel-incorporated and fullerene-incorporated lipid bilayer systems, suggesting that the lateral voltage is a practicable and useful additional input for use in lipid bilayer systems.


Asunto(s)
Canales Iónicos , Membrana Dobles de Lípidos , Electrodos , Silicio
2.
Micromachines (Basel) ; 12(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478052

RESUMEN

The reconstitution of ion-channel proteins in artificially formed bilayer lipid membranes (BLMs) forms a well-defined system for the functional analysis of ion channels and screening of the effects of drugs that act on these proteins. To improve the efficiency of the BLM reconstitution system, we report on a microarray of stable solvent-free BLMs formed in microfabricated silicon (Si) chips, where micro-apertures with well-defined nano- and micro-tapered edges were fabricated. Sixteen micro-wells were manufactured in a chamber made of Teflon®, and the Si chips were individually embedded in the respective wells as a recording site. Typically, 11 to 16 BLMs were simultaneously formed with an average BLM number of 13.1, which corresponded to a formation probability of 82%. Parallel recordings of ion-channel activities from multiple BLMs were successfully demonstrated using the human ether-a-go-go-related gene (hERG) potassium channel, of which the relation to arrhythmic side effects following drug treatment is well recognized.

3.
ACS Omega ; 4(19): 18299-18303, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31720530

RESUMEN

We report on a novel lipid bilayer system, in which a lateral bias can be applied in addition to a conventional transmembrane voltage. Freestanding bilayer lipid membranes (BLMs) doped with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were formed in a microaperture, around which metal electrodes were deposited. Using this system, it was possible to modulate and amplify photoinduced transmembrane currents by applying a lateral bias along the BLM. The results indicate that the microfabricated Si chip with embedded electrodes is a promising platform for the formation of transistor-like devices based on PCBM-doped BLMs and have potential for use in a wide variety of nanohybrid devices.

4.
Langmuir ; 34(19): 5615-5622, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29664647

RESUMEN

Artificial bilayer lipid membranes (BLMs) provide well-defined systems for investigating the fundamental properties of membrane proteins, including ion channels, and for screening the effect of drugs that act on them. However, the application of this technique is limited due to the low stability and low reconstitution efficiency of the process. We previously reported on improving the stability of BLM based on the fabrication of microapertures having a tapered edge in SiO2/Si3N4 septa and efficient ion channel incorporation based on vesicle fusion accelerated by a centrifugal force. Although the BLM stability and incorporation probability were dramatically improved when these approaches were used, some BLMs were ruptured when subjected to a centrifugal force. To further improve the BLM stability, we investigated the effect of modifying the surface of the SiO2/Si3N4 septa on the stability of BLM suspended in the septa. The modified surfaces were characterized in terms of hydrophobicity, lipophobicity, and surface roughness. Diffusion coefficients of the lipid monolayers formed on the modified surfaces were also determined. Highly fluidic lipid monolayers were formed on the amphiphobic substrates that had been modified with long-chain perfluorocarbons. Free-standing BLMs formed in amphiphobic septa showed a much higher mechanical stability, including tolerance to water movement and applied centrifugal forces with and without proteoliposomes, than those formed in the septa that had been modified with a short alkyl chain. These results demonstrate that highly stable BLMs are formed when the surface of the septa has amphiphobic properties. Because highly fluidic lipid monolayers that are formed on the septa seamlessly connect with BLMs in a free-standing region, the high fluidity of the lipids contributes to decreasing potential damage to BLMs when mechanical stresses are applied. This approach to improve the BLM stability increases the experimental efficiency of the BLM systems and will contribute to the development of high-throughput platforms for functional assays of ion channel proteins.


Asunto(s)
Membrana Dobles de Lípidos/química , Canales Iónicos/química , Fusión de Membrana , Dióxido de Silicio/química , Estrés Mecánico
5.
Sci Rep ; 7(1): 17736, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255199

RESUMEN

The self-assembled bilayer lipid membrane (BLM) is the basic component of the cell membrane. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for the functional analysis of ion channels and screening the effects of drugs that act on them. However, because BLMs are unstable, this limits the experimental throughput of BLM reconstitution systems. Here we report on the formation of mechanically stable solvent-free BLMs in microfabricated apertures with defined nano- and micro-tapered edge structures. The role of such nano- and micro-tapered structures on the stability of the BLMs was also investigated. Finally, this BLM system was combined with a cell-free synthesized human ether-a-go-go-related gene channel, a cardiac potassium channel whose relation to arrhythmic side effects following drug treatment is well recognized. Such stable BLMs as these, when combined with a cell-free system, represent a potential platform for screening the effects of drugs that act on various ion-channel genotypes.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Membrana Dobles de Lípidos/metabolismo , Sistemas Microelectromecánicos/métodos , Membrana Celular/metabolismo , Canales de Potasio Éter-A-Go-Go/fisiología , Humanos , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/síntesis química , Microtecnología/métodos , Canales de Potasio/metabolismo , Canales de Potasio/fisiología , Compuestos de Silicona , Solventes
6.
Biophys J ; 110(10): 2207-15, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27224486

RESUMEN

Artificially formed bilayer lipid membranes (BLMs) provide well-defined systems for functional analyses of various membrane proteins, including ion channels. However, difficulties associated with the integration of membrane proteins into BLMs limit the experimental efficiency and usefulness of such BLM reconstitution systems. Here, we report on the use of centrifugation to more efficiently reconstitute human ion channels in solvent-free BLMs. The method improves the probability of membrane fusion. Membrane vesicles containing the human ether-a-go-go-related gene (hERG) channel, the human cardiac sodium channel (Nav1.5), and the human GABAA receptor (GABAAR) channel were formed, and the functional reconstitution of the channels into BLMs via vesicle fusion was investigated. Ion channel currents were recorded in 67% of the BLMs that were centrifuged with membrane vesicles under appropriate centrifugal conditions (14-55 × g). The characteristic channel properties were retained for hERG, Nav1.5, and GABAAR channels after centrifugal incorporation into the BLMs. A comparison of the centrifugal force with reported values for the fusion force revealed that a centrifugal enhancement in vesicle fusion was attained, not by accelerating the fusion process but by accelerating the delivery of membrane vesicles to the surface of the BLMs, which led to an increase in the number of membrane vesicles that were available for fusion. Our method for enhancing the probability of vesicle fusion promises to dramatically increase the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based, high-throughput platform for functional assays of various membrane proteins.


Asunto(s)
Centrifugación , Canal de Potasio ERG1/metabolismo , Técnicas In Vitro , Membrana Dobles de Lípidos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Receptores de GABA-A/metabolismo , Animales , Células CHO , Cricetulus , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Fusión de Membrana , Potenciales de la Membrana , Microscopía de Fuerza Atómica , Técnicas de Placa-Clamp
7.
Appl Opt ; 53(4): 720-6, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24514189

RESUMEN

The angle of optical rotation was measured by detecting the phase difference between clockwise and counterclockwise circular polarized light that propagated in a sensing loop. This polarimeter, or glucose sensor, consisted of a Sagnac interference optical system with a polarization-maintaining optical fiber, so it was not affected by the control limitations of the polarization rotation angle or the optical power fluctuation that occurs with scattered light, reflection, or polarization rotation in an optical system. The angle of rotation was measured from the phase difference of the glucose sensor when the concentration of glucose was changed. We confirmed that the resolution of optical rotation was 5×10(-4) deg, and the resolution of the glucose concentration was 1 mg/dl accordingly. The measured specific rotation of glucose was mostly equal to a physical property value. One applications of this glucose sensor is in measuring the blood sugar levels of diabetic patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...