Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Phys Chem B ; 126(12): 2361-2368, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35316056

RESUMEN

Secretory-abundant heat-soluble (SAHS) proteins, which constitute a protein family unique to tardigrades, are thought to be essential for anhydrobiosis. Our previous study has revealed that one of the SAHS proteins of Ramazzottius varieornatus (RvSAHS1) has a more flexible entrance than a mammalian fatty-acid-binding protein, which has a crystal structure similar to that of RvSAHS1. Recently, SAHS paralogs that are expressed abundantly and specifically in the early embryos of this tardigrade and Hypsibius exemplaris have been identified. Comparing these amino-acid sequences with that of RvSAHS1, we have found characteristic differences as I113F and D146T. In this study, we investigate I113F and D146T mutants' properties of RvSAHS1 using molecular dynamics simulations and compare the structures and fluctuations of their entrances with those of the wild type. The two mutants exhibit different properties at the entrance of the ß-barrel structure. The I113F mutant tends to close the entrance more than the wild type due to the enhanced hydrophobic network inside the cavity. The D146T mutant, in contrast to the I113F mutant, tends to open the entrance. The mechanism by which this mutation opens the entrance is also discussed. Even though only a single mutation located far from the entrance is added to the wild type, there is a clear difference in the tendency to open and close the ß-barrel entrance. It indicates that the entrance properties of the SAHS protein are sensitive to the amino-acid sequence.


Asunto(s)
Tardigrada , Secuencia de Aminoácidos , Animales , Calor , Mamíferos/metabolismo , Proteínas/metabolismo , Tardigrada/genética , Tardigrada/metabolismo
2.
J Phys Chem B ; 125(32): 9145-9154, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34375104

RESUMEN

Secretory-abundant heat-soluble (SAHS) proteins are unique heat-soluble proteins of Tardigrada and are believed to play an essential role in anhydrobiosis, a latent state of life induced by desiccation. To investigate the dynamic properties, molecular dynamics (MD) simulations of a SAHS protein, RvSAHS1, were performed in solution and under dehydrating conditions. For comparison purposes, MD simulations of a human liver-type fatty-acid binding protein (LFABP) were performed in solution. Furthermore, high-speed atomic force microscopy observations were conducted to ascertain the results of the MD simulations. Three properties of RvSAHS1 were found as follows. (1) The entrance region of RvSAHS1 is more flexible and can be more extensive in solutions compared with that of a human LFABP because there is no salt bridge between the ßD and ßE strands. (2) The intrinsically disordered domain in the N-terminal region significantly fluctuates and can form an amphiphilic α-helix. (3) The size of the entrance region gets smaller along with dehydration, keeping the ß-barrel structure. Overall, the obtained results provide atomic-level dynamics of SAHS proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...