Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893838

RESUMEN

The WMoTaNbV alloy has shown promise for applications as a solid state hydrogen storage material. It absorbs significant quantities of H directly from the atmosphere, trapping it with high energy. In this work, the dynamics of the absorption of hydrogen isotopes are studied by determining the activation energy for the solubility and the solution enthalpy of H in the WMoTaNbV alloy. The activation energy was studied by heating samples in a H atmosphere at temperatures ranging from 20 °C to 400 °C and comparing the amounts of absorbed H. The solution activation energy EA of H was determined to be EA=0.22±0.02 eV (21.2 ± 1.9 kJ/mol). The performed density functional theory calculations revealed that the neighbouring host atoms strongly influenced the solution enthalpy, leading to a range of theoretical values from -0.40 eV to 0.29 eV (-38.6 kJ/mol to 28.0 kJ/mol).

2.
ACS Omega ; 9(10): 11747-11754, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496930

RESUMEN

In this paper, we present an ALD process for ScF3 using Sc(thd)3 and NH4F as precursors. This is the first material made by ALD that has a negative thermal expansion over a wide-temperature range. Crystalline films were obtained at the deposition temperatures of 250-375 °C, with a growth per cycle (GPC) increasing along the deposition temperature from 0.16 to 0.23 Å. Saturation of the GPC with respect to precursor pulses and purges was studied at 300 °C. Saturation was achieved with Sc(thd)3, whereas soft saturation was achieved with NH4F. The thickness of the films grows linearly with the number of applied ALD cycles. The F/Sc ratio is 2.9:3.1 as measured by ToF-ERDA. The main impurity is hydrogen with a maximum content of 3.0 at %. Also carbon and oxygen impurities were found in the films with maximum contents of 0.5 and 1.6 at %. The ScF3 process was also combined with an ALD AlF3 process to deposit ScxAlyFz films. In the AlF3 process, AlCl3 and NH4F were used as precursors. It was possible to modify the thermal expansion properties of ScF3 by Al3+ addition. The ScF3 films shrink upon annealing, whereas the ScxAlyFz films show thermal expansion, as measured with HTXRD. The thermal expansion becomes more pronounced as the Al content in the film is increased.

3.
Nat Mater ; 23(6): 762-767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38212445

RESUMEN

The van der Waals atomic solids of noble gases on metals at cryogenic temperatures were the first experimental examples of two-dimensional systems. Recently, such structures have also been created on surfaces under encapsulation by graphene, allowing studies at elevated temperatures through scanning tunnelling microscopy. However, for this technique, the encapsulation layer often obscures the arrangement of the noble gas atoms. Here we create Kr and Xe clusters in between two suspended graphene layers, and uncover their atomic structure through transmission electron microscopy. We show that small crystals (N < 9) arrange on the basis of the simple non-directional van der Waals interaction. Larger crystals show some deviations, possibly enabled by deformations in the encapsulating graphene lattice. We further discuss the dynamics of the clusters within the graphene sandwich, and show that although all the Xe clusters with up to N ≈ 100 remain solid, Kr clusters with already N ≈ 16 turn occasionally fluid under our experimental conditions (under a pressure of ~0.3 GPa). This study opens a way for the so-far unexplored frontier of encapsulated two-dimensional van der Waals solids with exciting possibilities for fundamental condensed-matter physics research and possible applications in quantum information technology.

4.
ACS Mater Au ; 3(3): 206-214, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38089133

RESUMEN

In this work, we developed an atomic layer deposition (ALD) process for gold metal thin films from chloro(triethylphosphine)gold(I) [AuCl(PEt3)] and 1,4-bis(trimethylgermyl)-1,4-dihydropyrazine [(Me3Ge)2DHP]. High purity gold films were deposited on different substrate materials at 180 °C for the first time with thermal reductive ALD. The growth rate is 1.7 Å/cycle after the film reaches full coverage. The films have a very low resistivity close to the bulk value, and a minimal amount of impurities could be detected. The reaction mechanism of the process is studied in situ with a quartz crystal microbalance and a quadrupole mass spectrometer.

5.
Dalton Trans ; 52(31): 10844-10854, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37486012

RESUMEN

The present study describes atomic layer deposition (ALD) processes and characterization of CoF2, NiF2, and HoF3 thin films. For CoF2 deposition CoCl2(TMEDA) (TMEDA = N,N,N',N'-tetramethylethylenediamine) and NH4F were used as precursors. CoF2 deposition was studied at 180-275 °C, resulting in a growth per cycle (GPC) of 0.7 to 1.2 Å. All the films consist of tetragonal CoF2 according to XRD. The impurity contents were measured with ToF-ERDA and less than 1 at% of N and Cl were detected in the films, indicating effective reactions. In addition, the F/Co ratio is close to 2 as measured by the same method. The saturation of the GPC with respect to precursor pulses and purges was verified at 250 °C. The common feature of ALD metal fluoride films - remarkable roughness - is encountered also in this process. However, the films became smoother as the deposition temperature was increased. CoF2 deposition was also demonstrated on graphite substrates. NiF2 deposition was studied at 210-250 °C by using Ni(thd)2 and TaF5 or a new fluoride source NbF5 as the precursors. Tetragonal NiF2 was obtained, but the oxygen and hydrogen contents in the films were remarkable, up to ∼11 at%, as measured by ToF-ERDA. This was observed also when the films were in situ capped with YF3. NbF5 was shown to be a potential fluoride precursor by combining it with Ho(thd)3 to deposit HoF3 films. Orthorhombic HoF3 was obtained at deposition temperatures of 200-275 °C. The films deposited at 235-275 °C are pure, and the Nb contents in films deposited at 250 and 275 °C are only 0.21 and 0.15 at%. The main impurity in both films is oxygen, but the contents are only 1.5 and 1.6 at%. The saturation of the GPC with respect to precursor pulses was verified at 250 °C. The GPC is ∼1 Å.

6.
J Chem Inf Model ; 63(1): 87-100, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36512692

RESUMEN

Glass fragments found in crime scenes may constitute important forensic evidence when properly analyzed, for example, to determine their origin. This analysis could be greatly helped by having a large and diverse database of glass fragments and by using it for constructing reliable machine learning (ML)-based glass classification models. Ideally, the samples that make up this database should be analyzed by a single accurate and standardized analytical technique. However, due to differences in equipment across laboratories, this is not feasible. With this in mind, in this work, we investigated if and how measurement performed at different laboratories on the same set of glass fragments could be combined in the context of ML. First, we demonstrated that elemental analysis methods such as particle-induced X-ray emission (PIXE), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDS), particle-induced Gamma-ray emission (PIGE), instrumental neutron activation analysis (INAA), and prompt Gamma-ray neutron activation analysis (PGAA) could each produce lab-specific ML-based classification models. Next, we determined rules for the successful combinations of data from different laboratories and techniques and demonstrated that when followed, they give rise to improved models, and conversely, poor combinations will lead to poor-performing models. Thus, the combination of PIXE and LA-ICP-MS improves the performances by ∼10-15%, while combining PGAA with other techniques provides poorer performances in comparison with the lab-specific models. Finally, we demonstrated that the poor performances of the SEM-EDS technique, still in use by law enforcement agencies, could be greatly improved by replacing SEM-EDS measurements for Fe and Ca by PIXE measurements for these elements. These findings suggest a process whereby forensic laboratories using different elemental analysis techniques could upload their data into a unified database and get reliable classification based on lab-agnostic models. This in turn brings us closer to a more exhaustive extraction of information from glass fragment evidence and furthermore may form the basis for international-wide collaboration between law enforcement agencies.


Asunto(s)
Vidrio
7.
Nanomaterials (Basel) ; 12(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558297

RESUMEN

Contact resistance between electrically connected parts of electronic elements can negatively affect their resulting properties and parameters. The contact resistance is influenced by the physicochemical properties of the connected elements and, in most cases, the lowest possible value is required. The issue of contact resistance is also addressed in connection with the increasingly frequently used carbon allotropes. This work aimed to determine the factors that influence contact resistance between graphene prepared by chemical vapour deposition and pre-patterned Cu and Au electrodes onto which graphene is subsequently transferred. It was found that electrode surface treatment methods affect the resistance between Cu and graphene, where contact resistance varied greatly, with an average of 1.25 ± 1.54 kΩ, whereas for the Au electrodes, the deposition techniques did not influence the resulting contact resistance, which decreased by almost two orders of magnitude compared with the Cu electrodes, to 0.03 ± 0.01 kΩ.

8.
Materials (Basel) ; 15(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36295361

RESUMEN

High entropy alloys are a promising new class of metal alloys with outstanding radiation resistance and thermal stability. The interaction with hydrogen might, however, have desired (H storage) or undesired effects, such as hydrogen-induced embrittlement or tritium retention in the fusion reactor wall. High entropy alloy WMoTaNbV and bulk W samples were used to study the quantity of irradiation-induced trapping sites and properties of D retention by employing thermal desorption spectrometry, secondary ion mass spectrometry, and elastic recoil detection analysis. The D implantation was not found to create additional hydrogen traps in WMoTaNbV as it does in W, while 90 at% of implanted D is retained in WMoTaNbV, in contrast to 35 at% in W. Implantation created damage predicted by SRIM is 0.24 dpa in WMoTaNbV, calculated with a density of 6.044×1022 atoms/cm3. The depth of the maximum damage was 90 nm. An effective trapping energy for D in WMoTaNbV was found to be about 1.7 eV, and the D emission temperature was close to 700 °C.

9.
Dalton Trans ; 51(39): 15142-15157, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36129328

RESUMEN

Atomic layer deposition offers outstanding film uniformity and conformality on substrates with high aspect ratio features. These qualities are essential for mixed-halide perovskite films applied in tandem solar cells, transistors and light-emitting diodes. The optical and electronic properties of mixed-halide perovskites can be adjusted by adjusting the ratios of different halides. So far ALD is only capable of depositing iodine-based halide perovskites whereas other halide processes are lacking. We describe six new low temperature (≤100 °C) ALD processes for PbCl2 and PbBr2 that are crucial steps for the deposition of mixed-halide perovskites with ALD. Lead bis[bis(trimethylsilyl)amide]-GaCl3 and -TiBr4 processes yield the purest, crystalline, uniform and conformal films of PbCl2 and PbBr2 respectively. We show that these two processes in combination with a PbI2 process from the literature deposit mixed lead halide films. The four less optimal processes revealed that reaction by-products in lead halide deposition processes may cause film etching or incorporate themselves into the film.

10.
Dalton Trans ; 51(29): 10898-10908, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35792068

RESUMEN

In this work, we developed a new ALD process for nickel metal from dichlorobis(triethylphosphine)nickel(II) (NiCl2(PEt3)2) and 1,4-bis(trimethylgermyl)-1,4-dihydropyrazine ((Me3Ge)2DHP). A series of phosphine adducts of nickel and cobalt halides were synthesized and characterized for their volatility and thermal stability. Also (Me3Ge)2DHP is a novel reducing agent in ALD. Smooth nickel films were deposited on different substrate materials at 110 °C, which is the lowest deposition temperature for Ni metal found in the literature. The growth rate is 0.2 Å per cycle when the film is not continuous and decreases to 0.1 Å per cycle after the film becomes pinhole-free. Besides a small amount (7 at%) of carbidic carbon, the films have only small amounts of impurities. Most notably, the chlorine content is below 0.2 at%, indicating efficient reduction. Furthermore, we think that (Me3Ge)2DHP can open new avenues for the ALD of other metals at low temperatures.

11.
Forensic Sci Int ; 336: 111327, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35635980

RESUMEN

There is a considerable interest in developing new analytical tools to fight the illicit trafficking of heritage goods and particularly of easel paintings, whose high market values attract an ever-increasing volume of criminal activities. The objective is to combat the illicit traffic of smuggled or forged paintworks and to prevent the acquisition of fakes or looted artefacts in public collections. Authentication can be addressed using various investigation techniques, such as absolute dating, materials characterization, alteration phenomena, etc.; for paintings this remains a challenging task due to the complexity of the materials (paint layers, ground, varnish, canvas, etc.) and preferable use of non-destructive methods. This paper outlines results from concerted action on detecting forged works of art within the framework of a Coordinated Research Project of the International Atomic Energy Agency (IAEA) called Enhancing Nuclear Analytical Techniques to Meet the Needs of Forensic Sciences1. One of the main objectives is to foster the use of emerging Nuclear Analytical Techniques (NAT) using particle accelerators for authentication of paintings, with potential application to other forensics domains, by highlighting their ability to determine painting authenticity and to track restorations or anachronistic clues. The various materials comprising a test painting were investigated using an array of NAT. Binder, canvas and support were directly dated by 14C using Accelerator Mass Spectrometry (14C-AMS); binder and pigments' molecular composition was determined using Secondary Ion Mass Spectrometry with MeV ions (MeV-SIMS); paint layer composition and stratigraphy were accurately determined using Ion Beam Analysis (IBA) and differential Particle-Induced X-ray Emission (PIXE); and pigment spatial distributions were mapped using full-field PIXE. High resolution Optical Photothermal Infrared Spectroscopy (O-PTIR) molecular imaging was also exploited. Obtained results are presented and discussed. It is shown that the combination of the above-mentioned techniques allowed reconstructing the history of the test painting.


Asunto(s)
Pinturas , Iones , Espectrometría de Masas , Pintura/análisis , Rayos X
12.
Forensic Sci Int ; 333: 111216, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35220157

RESUMEN

The International Atomic Energy Agency (IAEA) has coordinated a research project titled "Enhancing Nuclear Analytical Techniques to Meet the Needs of Forensics Sciences" (CRP F11021) with the aim of empowering accelerator and reactor based techniques for applications in forensic sciences. One of the key topics of this project was the analysis and classification of forensic glass specimens using Ion Beam Analysis (IBA) techniques and in particular, Particle Induced X-ray Emission (PIXE). To this end, glass fragments from car windows from different car models and manufacturers provided by the Israeli police force were subjected to PIXE measurements at three laboratories to determine their elemental compositions and possible glass corrosion. Major and trace elements were measured and given as an input to machine learning (ML) algorithms in order to develop classification models to determine the origin of the glass samples. First, we have developed ML models based on the results obtained at each lab. These models successfully classified glass fragments into different car models with an accuracy> 80% on external test sets. Next, we demonstrated that following an appropriate pre-processing step, results from different labs could be combined into a single unified database for the derivation of a classification model. This model demonstrates good performances that matches or surpasses the performances of models derived from the individual labs. This finding paves the way towards establishing an international database that is composed of measurements from various PIXE labs. We believe that using this methodology of combining various sources of measurements will improve models' performances and generality and will make the models accessible to law enforcement agencies around the world.

13.
Dalton Trans ; 50(38): 13264-13275, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34608915

RESUMEN

Co9S8 is an interesting sulfide material with metallic conductivity that has shown promise for various energy applications. Herein, we report a new atomic layer deposition process producing crystalline, pure, and highly conductive Co9S8 thin films using CoCl2(TMEDA) (TMEDA = N,N,N',N'-tetramethylethylenediamine) and H2S as precursors at 180-300 °C. The lowest resistivity of 80 µΩ cm, best uniformity, and highest growth rate are achieved at 275 °C. Area-selective deposition is enabled by inherent substrate-dependency of film nucleation. We show that a continuous and conductive Co9S8 film can be prepared on oxide-covered silicon without any growth on Si-H. Besides silicon, Co9S8 films can be grown on a variety of substrates. The first example of an epitaxial Co9S8 film is shown using a GaN substrate. The Co9S8 films are stable up to 750 °C in N2, 400 °C in forming gas, and 225 °C in O2 atmosphere. The reported ALD process offers a scalable and cost-effective route to high-quality Co9S8 films, which are of interest for applications ranging from electrocatalysis and rechargeable batteries to metal barrier and liner layers in microelectronics and beyond.

14.
ACS Appl Mater Interfaces ; 13(36): 42773-42790, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34491036

RESUMEN

Nickel-rich layered oxides, such as LiNi0.6Co0.2Mn0.2O2 (NMC622), are high-capacity electrode materials for lithium-ion batteries. However, this material faces issues, such as poor durability at high cut-off voltages (>4.4 V vs Li/Li+), which mainly originate from an unstable electrode-electrolyte interface. To reduce the side reactions at the interfacial zone and increase the structural stability of the NMC622 materials, nanoscale (<5 nm) coatings of TiOx (TO) and LixTiyOz (LTO) were deposited over NMC622 composite electrodes using atomic layer deposition. It was found that these coatings provided a protective surface and also reinforced the electrode structure. Under high-voltage range (3.0-4.6 V) cycling, the coatings enhance the NMC electrochemical behavior, enabling longer cycle life and higher capacity. Cyclic voltammetry, X-ray photoelectron spectroscopy, and X-ray diffraction analyses of the coated NMC electrodes suggest that the enhanced electrochemical performance originates from reduced side reactions. In situ dilatometry analysis shows reversible volume change for NMC-LTO during the cycling. It revealed that the dilation behavior of the electrode, resulting in crack formation and consequent particle degradation, is significantly suppressed for the coated sample. The ability of the coatings to mitigate the electrode degradation mechanisms, illustrated in this report, provides insight into a method to enhance the performance of Ni-rich positive electrode materials under high-voltage ranges.

15.
Environ Sci Technol ; 55(8): 4368-4377, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33769801

RESUMEN

Black carbon (BC) particles contribute to climate warming by heating the atmosphere and reducing the albedo of snow/ice surfaces. The available Arctic BC deposition records are restricted to the Atlantic and North American sectors, for which previous studies suggest considerable spatial differences in trends. Here, we present first long-term BC deposition and radiocarbon-based source apportionment data from Russia using four lake sediment records from western Arctic Russia, a region influenced by BC emissions from oil and gas production. The records consistently indicate increasing BC fluxes between 1800 and 2014. The radiocarbon analyses suggest mainly (∼70%) biomass sources for BC with fossil fuel contributions peaking around 1960-1990. Backward calculations with the atmospheric transport model FLEXPART show emission source areas and indicate that modeled BC deposition between 1900 and 1999 is largely driven by emission trends. Comparison of observed and modeled data suggests the need to update anthropogenic BC emission inventories for Russia, as these seem to underestimate Russian BC emissions and since 1980s potentially inaccurately portray their trend. Additionally, the observations may indicate underestimation of wildfire emissions in inventories. Reliable information on BC deposition trends and sources is essential for design of efficient and effective policies to limit climate warming.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Regiones Árticas , Carbono/análisis , Monitoreo del Ambiente , Federación de Rusia , Hollín/análisis
16.
Phys Rev Lett ; 125(22): 225503, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33315460

RESUMEN

Combining spatially resolved x-ray Laue diffraction with atomic-scale simulations, we observe how ion-irradiated tungsten undergoes a series of nonlinear structural transformations with increasing radiation exposure. Nanoscale defect-induced deformations accumulating above 0.02 displacements per atom (dpa) lead to highly fluctuating strains at ∼0.1 dpa, collapsing into a driven quasisteady structural state above ∼1 dpa. The driven asymptotic state is characterized by finely dispersed vacancy defects coexisting with an extended dislocation network and exhibits positive volumetric swelling, due to the creation of new crystallographic planes through self-interstitial coalescence, but negative lattice strain.

17.
Nucl Med Biol ; 84-85: 102-110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32334356

RESUMEN

INTRODUCTION: Porous silicon (PSi) nanoparticles are capable of delivering therapeutic payloads providing targeted delivery and sustained release of the payloads. In this work we describe the development and proof-of-concept in vivo evaluation of thermally hydrocarbonized porous silicon (PSi) nanoparticles that are implanted with radioactive 155Tb atoms and coated with red blood cell (RBC) membrane (155Tb-THCPSi). The developed nanocomposites can be utilized as an intravenous delivery platform for theranostic radionuclides. METHODS: THCPSi thin films were implanted with 155Dy ions that decay to 155Tb at the ISOLDE radioactive ion-beam (RIB) facility at CERN. The films were processed to nanoparticles by ball-milling and sonication, and subsequently coated with either a solid lipid and RBC membrane or solely with RBC membrane. The nanocomposites were evaluated in vitro for stability and in vivo for circulation half-life and ex vivo for biodistribution in Balb/c mice. RESULTS: Nanoporous THCPSi films were successfully implanted with 155Tb and processed to coated nanoparticles. The in vitro stability of the particles in plasma and buffer solutions was not significantly different between the particle types, and therefore the RBC membrane coated particles with less laborious processing method were chosen for the biological evaluation. The RBC membrane coating enhanced significantly the blood half-life compared to bare THCPSi particles. In the ex vivo biodistribution study a pronounced accumulation to the spleen was found, with lower uptake in the liver and a minor uptake in the lung, gall bladder and bone marrow. CONCLUSIONS: We have demonstrated, using 155Tb RIB-implanted PSi nanoparticles coated with mouse RBC membranes, the feasibility of using such a theranostic nanosystem for the delivery of RIB based radionuclides with prolonged circulation time. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: For the first time, the RIB implantation technique has been utilized to produce PSi nanoparticle with a surface modified for better persistence in circulation. When optimized, these particles could be used in targeted radionuclide therapy with a combination of chemotherapeutic payload within the PSi structure.


Asunto(s)
Membrana Eritrocítica/química , Nanopartículas/química , Radioisótopos/química , Silicio/química , Terbio/química , Animales , Tampones (Química) , Estabilidad de Medicamentos , Semivida , Humanos , Ratones , Porosidad
18.
Nanotechnology ; 31(19): 195713, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31978899

RESUMEN

Amorphous SiO2-Nb2O5 nanolaminates and mixture films were grown by atomic layer deposition. The films were grown at 300 °C from Nb(OC2H5)5, Si2(NHC2H5)6, and O3 to thicknesses ranging from 13 to 130 nm. The niobium to silicon atomic ratio was varied in the range of 0.11-7.20. After optimizing the composition, resistive switching properties could be observed in the form of characteristic current-voltage behavior. Switching parameters in the conventional regime were well defined only in a SiO2:Nb2O5 mixture at certain, optimized, composition with Nb:Si atomic ratio of 0.13, whereas low-reading voltage measurements allowed recording memory effects in a wider composition range.

19.
ACS Omega ; 4(6): 11205-11214, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31460221

RESUMEN

Herein, we report an atomic layer deposition (ALD) process for Cu2O thin films using copper(II) acetate [Cu(OAc)2] and water vapor as precursors. This precursor combination enables the deposition of phase-pure, polycrystalline, and impurity-free Cu2O thin films at temperatures of 180-220 °C. The deposition of Cu(I) oxide films from a Cu(II) precursor without the use of a reducing agent is explained by the thermally induced reduction of Cu(OAc)2 to the volatile copper(I) acetate, CuOAc. In addition to the optimization of ALD process parameters and characterization of film properties, we studied the Cu2O films in the fabrication of photoconductor devices. Our proof-of-concept devices show that approximately 20 nm thick Cu2O films can be used for photodetection in the visible wavelength range and that the thin film photoconductors exhibit improved device characteristics in comparison to bulk Cu2O crystals.

20.
Nanoscale Res Lett ; 14(1): 55, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30747362

RESUMEN

In this work, we report the successful growth of high-quality SiO2 films by low-temperature plasma-enhanced atomic layer deposition using an oxidant which is compatible with moisture/oxygen sensitive materials. The SiO2 films were grown at 90 °C using CO2 and Bis(tertiary-butylamino)silane as process precursors. Growth, chemical composition, density, optical properties, and residual stress of SiO2 films were investigated. SiO2 films having a saturated growth-per-cycle of ~ 1.15 Å/cycle showed a density of ~ 2.1 g/cm3, a refractive index of ~ 1.46 at a wavelength of 632 nm, and a low tensile residual stress of ~ 30 MPa. Furthermore, the films showed low impurity levels with bulk concentrations of ~ 2.4 and ~ 0.17 at. % for hydrogen and nitrogen, respectively, whereas the carbon content was found to be below the measurement limit of time-of-flight elastic recoil detection analysis. These results demonstrate that CO2 is a promising oxidizing precursor for moisture/oxygen sensitive materials related plasma-enhanced atomic layer deposition processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA