Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Sci ; 104(7): 871-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23551833

RESUMEN

Most cancer cells are aneuploid, which could be caused by defects in chromosome segregation machinery. Nucleoporins (Nup) are components of the nuclear pore complex, which is essential for nuclear transport during interphase, but several nucleoporins are also known to be involved in chromosome segregation. Here we report a novel function of Nup188, one of the nucleoporins regulating chromosome segregation. Nup188 localizes to spindle poles during mitosis, through the C-terminal region of Nup188. In Nup188-depleted mitotic cells, chromosomes fail to align to the metaphase plate, which causes mitotic arrest due to the spindle assembly checkpoint. Both the middle and the C-terminal regions were required for chromosome alignment. Robust K-fibers, microtubule bundles attaching to kinetochores, were hardly formed in Nup188-depleted cells. Significantly, we found that Nup188 interacts with NuMA, which plays an instrumental role in focusing microtubules at centrosomes, and NuMA localization to spindle poles is perturbed in Nup188-depleted cells. These data suggest that Nup188 promotes chromosome alignment through K-fiber formation and recruitment of NuMA to spindle poles.


Asunto(s)
Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Mitosis/genética , Proteínas de Complejo Poro Nuclear/genética , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Metafase/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo
2.
FEBS Lett ; 584(11): 2387-92, 2010 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-20399776

RESUMEN

We investigated the fate of budding yeast treated with nocodazole, a microtubule-depolymerizing drug. Cells died after mitotic arrest while staying in mitosis, suggesting that mitotic cell death, but not mitotic slippage, mainly occurs in nocodazole-treated cells. Nocodazole-treated cells showed features of apoptotic-like cell death, but not those of cell lysis or autophagy. Consistently, mitochondria-dependent production of reactive oxygen species was involved in the cell death. Similar cell death was also seen in cells after mitotic arrest by perturbation of the anaphase-promoting complex/cyclosome. In addition, caspase activity was found in nocodazole-treated cells, which was independent of the metacaspase, Mca1. Our results suggest that budding yeast can be a model to study mitotic cell death in cancer treatment with antimitotic drugs.


Asunto(s)
Núcleo Celular/metabolismo , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Nocodazol/farmacología , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Muerte Celular/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA