Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artif Cells Nanomed Biotechnol ; 51(1): 334-345, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37455406

RESUMEN

Metastatic melanoma cancer stem cells are subpopulations linked to tumour development, immunoevasive behaviour, treatment resistance, and metastasis, all of which contribute to a poor prognosis. Photodynamic treatment (PDT) is an alternate strategy to cancer eradication that involves the generation of reactive oxygen species. As a carrier, nanoparticles enable efficient cellular uptake of photosensitizers, improving organelle accumulation and cancer cell targeted therapy. This study considered at the effect of PDT on CD133+ Melanoma Stem Cells utilising an Aluminium Phthalocyanine Gold Nanoparticle (AlPcS4Cl-AuNP) combination. A ligand exchange approach was used to conjugate AlPcS4Cl-PEG-AuNP-COOH and was characterised using UV-Vis, FTIR, DLS and Zeta Potential. Stem cells isolated from the A375 cell line irradiated with a laser at 673.2 nm with a fluency of 5 J/cm2 were evaluated. Furthermore, it was important to study if apoptosis was one of the mechanisms causing to cell death which was substantiated with Annexin V/PI, caspase 3 and p53 analysis. The nanoparticle conjugate mediated PDT promoted apoptotic cell death, showing increased expression of p53 and caspase-3. The study proposed a strategy aimed at extending the understanding of PDT in enhancing the therapy of melanoma, suggesting a probable improved cell death when AlPcS4Cl was conjugated to AuNPs.


Asunto(s)
Melanoma , Nanopartículas del Metal , Fotoquimioterapia , Humanos , Nanoconjugados/uso terapéutico , Oro/metabolismo , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Melanoma/patología , Fármacos Fotosensibilizantes/farmacología , Apoptosis , Células Madre/metabolismo
2.
Pharmaceutics ; 14(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432665

RESUMEN

Metastatic melanoma cancer stem cells are subpopulations that have been identified and linked to tumor progression, immunoevasive behavior, drug resistance, and metastasis, leading to a poor prognosis. Photodynamic therapy (PDT) is an approach to eradicate cancer through a photochemical process which directly generates reactive oxygen species (ROS). This study investigated the impact of PDT using an aluminum phthalocyanine gold nanoparticle (AlPcS4Cl-AuNP) conjugate for targeting melanoma stem cells. The isolated stem cells were irradiated at 673.2 nm with a radiant exposure of 5 J/cm2. Post-irradiation signs of cell death were determined using microscopy and biochemical assays. A possible enhanced effect of ROS in inducing cell death could be seen when AlPcS4Cl was conjugated to AuNPs. Nanoparticles as carriers promote the efficient cellular uptake of photosensitizers, enhancing organelle accumulation and the targeted therapy of cancerous cells. A biochemical assay revealed significant post-irradiation signs of cell death. The measurement of adenosine triphosphate (ATP) content revealed a decrease in cell proliferation. The study suggested an approach directed at expanding the knowledge on PDT to improve cancer treatment. Understanding the cell death mechanism through which ROS influence cancer stem cells (CSCs) is, therefore, useful for improving PDT efficiency and preventing tumor recurrence and metastasis.

3.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575889

RESUMEN

Photodynamic Therapy (PDT), an unconventional cancer therapy with optimistic desirable effects, utilizes the delivery of a photosensitizer (PS) that is activated by light at a particular wavelength and inducing oxidative cytotoxic damage of a tumor and its surrounding vasculature. Deeper seated tumors such as internally metastasized melanomas are more difficult to treat with PDT as the penetration of laser light to those sites is less. Limitations in targeting melanomas can also be attributed to melanin pigments that hinder laser light from reaching targeted sites. Exosomes serve as naturally occurring nanoparticles that can be re-assembled with PSs, improving targeted cellular absorption of photosensitizing agents during PDT. Additionally, studies indicate that exosomes released from PDT-treated tumor cells play a critical role in mediating anti-tumor immune responses. This review collates the role of Melanoma Cell-Derived Exosomes (MTEX) in immune response mediation and metastasis. Tumor Cell-Derived Exosomes (TEX) post PDT treatment are also reviewed, as well as the effects of exosomes as carriers of photosensitizers and delivery systems for PDT. The understanding and research on the role of melanoma exosomes induced by Photodynamic Therapy and their tumor microenvironment will assist in future research in treatment prospects and implications.


Asunto(s)
Exosomas/metabolismo , Melanoma/metabolismo , Melanoma/patología , Fotoquimioterapia , Microambiente Tumoral/efectos de la radiación , Animales , Micropartículas Derivadas de Células/metabolismo , Susceptibilidad a Enfermedades , Vesículas Extracelulares/metabolismo , Humanos , Inmunidad , Melanoma/etiología , Melanoma/terapia , Invasividad Neoplásica , Metástasis de la Neoplasia , Fotoquimioterapia/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA